i
Cognizant
Proud winner of ABECA 2024 - AmbitionBox Employee Choice Awards
Filter interviews by
I applied via Referral and was interviewed in Apr 2023. There were 4 interview rounds.
I applied via Naukri.com and was interviewed in Dec 2024. There were 3 interview rounds.
This was good aptitude test computer based
Coding round share screen and code
Bagging and boosting are ensemble learning techniques used to improve the performance of machine learning models by combining multiple weak learners.
Bagging (Bootstrap Aggregating) involves training multiple models independently on different subsets of the training data and then combining their predictions through averaging or voting.
Boosting involves training multiple models sequentially, where each subsequent model c...
Parameters of a Decision Tree include max depth, min samples split, criterion, and splitter.
Max depth: maximum depth of the tree
Min samples split: minimum number of samples required to split an internal node
Criterion: function to measure the quality of a split (e.g. 'gini' or 'entropy')
Splitter: strategy used to choose the split at each node (e.g. 'best' or 'random')
Developed a predictive model to forecast customer churn in a telecom company
Collected and cleaned customer data including usage patterns and demographics
Used machine learning algorithms such as logistic regression and random forest to build the model
Evaluated model performance using metrics like accuracy, precision, and recall
Provided actionable insights to the company to reduce customer churn rate
I was interviewed in Oct 2024.
Transfer learning involves using pre-trained models on a different task, while fine-tuning involves further training a pre-trained model on a specific task.
Transfer learning uses knowledge gained from one task to improve learning on a different task.
Fine-tuning involves adjusting the parameters of a pre-trained model to better fit a specific task.
Transfer learning is faster and requires less data compared to training a...
I applied via Approached by Company and was interviewed in Aug 2024. There were 2 interview rounds.
*****, arjumpudi satyanarayana
Python is a high-level programming language known for its simplicity and readability.
Python is widely used for web development, data analysis, artificial intelligence, and scientific computing.
It emphasizes code readability and uses indentation for block delimiters.
Python has a large standard library and a vibrant community of developers.
Example: print('Hello, World!')
Example: import pandas as pd
Code problems refer to issues or errors in the code that need to be identified and fixed.
Code problems can include syntax errors, logical errors, or performance issues.
Examples of code problems include missing semicolons, incorrect variable assignments, or inefficient algorithms.
Identifying and resolving code problems is a key skill for data scientists to ensure accurate and efficient data analysis.
Python code is a programming language used for data analysis, machine learning, and scientific computing.
Python code is written in a text editor or an integrated development environment (IDE)
Python code is executed using a Python interpreter
Python code can be used for data manipulation, visualization, and modeling
The project is a machine learning model to predict customer churn for a telecommunications company.
Developing predictive models using machine learning algorithms
Analyzing customer data to identify patterns and trends
Evaluating model performance and making recommendations for reducing customer churn
The question seems to be incomplete or misspelled.
It is possible that the interviewer made a mistake while asking the question.
Ask for clarification or context to provide a relevant answer.
I applied via Approached by Company and was interviewed in Sep 2024. There was 1 interview round.
I applied via Naukri.com and was interviewed in Sep 2024. There were 2 interview rounds.
Find Nth-largest element in an array
Sort the array in descending order
Return the element at index N-1
I applied via Naukri.com and was interviewed in Jul 2024. There was 1 interview round.
Context window in LLMs refers to the number of surrounding words considered when predicting the next word in a sequence.
Context window helps LLMs capture dependencies between words in a sentence.
A larger context window allows the model to consider more context but may lead to increased computational complexity.
For example, in a context window of 2, the model considers 2 words before and 2 words after the target word fo
top_k parameter is used to specify the number of top elements to be returned in a result set.
top_k parameter is commonly used in machine learning algorithms to limit the number of predictions or recommendations.
For example, in recommendation systems, setting top_k=5 will return the top 5 recommended items for a user.
In natural language processing tasks, top_k can be used to limit the number of possible next words in a
Regex patterns in Python are sequences of characters that define a search pattern.
Regex patterns are used for pattern matching and searching in strings.
They are created using the 're' module in Python.
Examples of regex patterns include searching for email addresses, phone numbers, or specific words in a text.
Iterators are objects that allow iteration over a sequence of elements. Tuples are immutable sequences of elements.
Iterators are used to loop through elements in a collection, like lists or dictionaries
Tuples are similar to lists but are immutable, meaning their elements cannot be changed
Example of iterator: for item in list: print(item)
Example of tuple: my_tuple = (1, 2, 3)
Yes, I have experience working with REST APIs in various projects.
Developed RESTful APIs using Python Flask framework
Consumed REST APIs in data analysis projects using requests library
Used Postman for testing and debugging REST APIs
Forecasting problem - Predict daily sku level sales
Bias is error due to overly simplistic assumptions, variance is error due to overly complex models.
Bias is the error introduced by approximating a real-world problem, leading to underfitting.
Variance is the error introduced by modeling the noise in the training data, leading to overfitting.
High bias can cause a model to miss relevant relationships between features and target variable.
High variance can cause a model to ...
Parametric models make strong assumptions about the form of the underlying data distribution, while non-parametric models do not.
Parametric models have a fixed number of parameters, while non-parametric models have a flexible number of parameters.
Parametric models are simpler and easier to interpret, while non-parametric models are more flexible and can capture complex patterns in data.
Examples of parametric models inc...
I applied via Recruitment Consulltant and was interviewed in Jul 2024. There were 3 interview rounds.
based on 10 reviews
Rating in categories
Associate
72.4k
salaries
| ₹5.1 L/yr - ₹16 L/yr |
Programmer Analyst
55.4k
salaries
| ₹2.4 L/yr - ₹9.6 L/yr |
Senior Associate
48.3k
salaries
| ₹9 L/yr - ₹27.2 L/yr |
Senior Processing Executive
28.7k
salaries
| ₹1.8 L/yr - ₹9 L/yr |
Technical Lead
17.6k
salaries
| ₹5.9 L/yr - ₹24.2 L/yr |
TCS
Infosys
Wipro
Accenture