Upload Button Icon Add office photos

Filter interviews by

Zebra Technologies Data Scientist Interview Questions and Answers

Updated 10 Nov 2024

Zebra Technologies Data Scientist Interview Experiences

1 interview found

Interview experience
5
Excellent
Difficulty level
-
Process Duration
-
Result
-
Round 1 - Case Study 

Forecasting problem - Predict daily sku level sales

Round 2 - Technical 

(2 Questions)

  • Q1. What is difference between bias and variance
  • Ans. 

    Bias is error due to overly simplistic assumptions, variance is error due to overly complex models.

    • Bias is the error introduced by approximating a real-world problem, leading to underfitting.

    • Variance is the error introduced by modeling the noise in the training data, leading to overfitting.

    • High bias can cause a model to miss relevant relationships between features and target variable.

    • High variance can cause a model to ...

  • Answered by AI
  • Q2. Parametric vs non parametruc model
  • Ans. 

    Parametric models make strong assumptions about the form of the underlying data distribution, while non-parametric models do not.

    • Parametric models have a fixed number of parameters, while non-parametric models have a flexible number of parameters.

    • Parametric models are simpler and easier to interpret, while non-parametric models are more flexible and can capture complex patterns in data.

    • Examples of parametric models inc...

  • Answered by AI

Skills evaluated in this interview

Data Scientist Jobs at Zebra Technologies

View all

Interview questions from similar companies

Interview experience
5
Excellent
Difficulty level
-
Process Duration
-
Result
-
Round 1 - Technical 

(3 Questions)

  • Q1. Difference between bagging and boosting
  • Ans. 

    Bagging and boosting are ensemble learning techniques used to improve the performance of machine learning models by combining multiple weak learners.

    • Bagging (Bootstrap Aggregating) involves training multiple models independently on different subsets of the training data and then combining their predictions through averaging or voting.

    • Boosting involves training multiple models sequentially, where each subsequent model c...

  • Answered by AI
  • Q2. Parameters of Decision Tree
  • Ans. 

    Parameters of a Decision Tree include max depth, min samples split, criterion, and splitter.

    • Max depth: maximum depth of the tree

    • Min samples split: minimum number of samples required to split an internal node

    • Criterion: function to measure the quality of a split (e.g. 'gini' or 'entropy')

    • Splitter: strategy used to choose the split at each node (e.g. 'best' or 'random')

  • Answered by AI
  • Q3. Explain any one of your project in detail
  • Ans. 

    Developed a predictive model to forecast customer churn in a telecom company

    • Collected and cleaned customer data including usage patterns and demographics

    • Used machine learning algorithms such as logistic regression and random forest to build the model

    • Evaluated model performance using metrics like accuracy, precision, and recall

    • Provided actionable insights to the company to reduce customer churn rate

  • Answered by AI

Skills evaluated in this interview

Interview experience
3
Average
Difficulty level
Moderate
Process Duration
Less than 2 weeks
Result
Selected Selected

I applied via Approached by Company and was interviewed in Aug 2024. There were 2 interview rounds.

Round 1 - Coding Test 

*****, arjumpudi satyanarayana

Round 2 - Technical 

(5 Questions)

  • Q1. What is the python language
  • Ans. 

    Python is a high-level programming language known for its simplicity and readability.

    • Python is widely used for web development, data analysis, artificial intelligence, and scientific computing.

    • It emphasizes code readability and uses indentation for block delimiters.

    • Python has a large standard library and a vibrant community of developers.

    • Example: print('Hello, World!')

    • Example: import pandas as pd

  • Answered by AI
  • Q2. What is the code problems
  • Ans. 

    Code problems refer to issues or errors in the code that need to be identified and fixed.

    • Code problems can include syntax errors, logical errors, or performance issues.

    • Examples of code problems include missing semicolons, incorrect variable assignments, or inefficient algorithms.

    • Identifying and resolving code problems is a key skill for data scientists to ensure accurate and efficient data analysis.

  • Answered by AI
  • Q3. What is the python code
  • Ans. 

    Python code is a programming language used for data analysis, machine learning, and scientific computing.

    • Python code is written in a text editor or an integrated development environment (IDE)

    • Python code is executed using a Python interpreter

    • Python code can be used for data manipulation, visualization, and modeling

  • Answered by AI
  • Q4. What is the project
  • Ans. 

    The project is a machine learning model to predict customer churn for a telecommunications company.

    • Developing predictive models using machine learning algorithms

    • Analyzing customer data to identify patterns and trends

    • Evaluating model performance and making recommendations for reducing customer churn

  • Answered by AI
  • Q5. What is the lnderssip
  • Ans. 

    The question seems to be incomplete or misspelled.

    • It is possible that the interviewer made a mistake while asking the question.

    • Ask for clarification or context to provide a relevant answer.

  • Answered by AI

Interview Preparation Tips

Topics to prepare for IBM Data Scientist interview:
  • Python
  • Machine Learning
Interview preparation tips for other job seekers - No

Skills evaluated in this interview

Interview experience
3
Average
Difficulty level
Moderate
Process Duration
4-6 weeks
Result
Not Selected

I applied via Naukri.com and was interviewed in Sep 2024. There were 2 interview rounds.

Round 1 - Technical 

(3 Questions)

  • Q1. Overfitting and Underfitting
  • Q2. Find Nth-largest element
  • Ans. 

    Find Nth-largest element in an array

    • Sort the array in descending order

    • Return the element at index N-1

  • Answered by AI
  • Q3. NLP Data preprocessing
Round 2 - HR 

(2 Questions)

  • Q1. Salary Discussion
  • Q2. Fitment discussion

Skills evaluated in this interview

Interview experience
5
Excellent
Difficulty level
Easy
Process Duration
Less than 2 weeks
Result
Not Selected

I applied via Naukri.com and was interviewed in Jul 2024. There were 2 interview rounds.

Round 1 - One-on-one 

(3 Questions)

  • Q1. Tell me about yourself?
  • Ans. 

    I am a data scientist with a background in statistics and machine learning, passionate about solving complex problems using data-driven approaches.

    • Background in statistics and machine learning

    • Experience in solving complex problems using data-driven approaches

    • Passionate about leveraging data to drive insights and decision-making

  • Answered by AI
  • Q2. Describe in detail about one of my main project.
  • Ans. 

    Developed a predictive model for customer churn in a telecom company.

    • Collected and cleaned customer data including usage patterns and demographics.

    • Used machine learning algorithms such as logistic regression and random forest to build the model.

    • Evaluated model performance using metrics like accuracy, precision, and recall.

    • Implemented the model into the company's CRM system for real-time predictions.

  • Answered by AI
  • Q3. Few questions related to my projects.
Round 2 - Technical 

(1 Question)

  • Q1. Questions on Basics python(Since i am fresher)

Interview Preparation Tips

Interview preparation tips for other job seekers - Overall, it was a good experience for me. Very friendly interviewers. I couldn't make it after the second round. I came to know where I was lacking.
Interview experience
5
Excellent
Difficulty level
-
Process Duration
-
Result
-
Round 1 - Technical 

(2 Questions)

  • Q1. Asked questions related to stats , Senario based. Interviewer was very nice
  • Q2. Asked questions on Python Programming and asked for Programs Like How can update List , Asked to Build a Tough Dict , Class etc.
Round 2 - HR 

(2 Questions)

  • Q1. Why u want to join?
  • Q2. What is your future goal?
Interview experience
3
Average
Difficulty level
-
Process Duration
-
Result
-

I applied via Naukri.com and was interviewed in Jul 2024. There was 1 interview round.

Round 1 - Technical 

(1 Question)

  • Q1. Pandas basics and SQL joins nlp

Interview Preparation Tips

Interview preparation tips for other job seekers - It was good
Interview experience
1
Bad
Difficulty level
Moderate
Process Duration
-
Result
No response

I was interviewed in May 2024.

Round 1 - One-on-one 

(2 Questions)

  • Q1. Tell me about your self?
  • Q2. What is maths and stats
  • Ans. 

    Maths and stats refer to the study of mathematical concepts and statistical methods for analyzing data.

    • Maths involves the study of numbers, quantities, shapes, and patterns.

    • Stats involves collecting, analyzing, interpreting, and presenting data.

    • Maths is used to solve equations, calculate probabilities, and model real-world phenomena.

    • Stats is used to make informed decisions, draw conclusions, and test hypotheses.

    • Both ma...

  • Answered by AI
Round 2 - Coding Test 

Confusion matrix what are your job rolls explain me Gradient boosting algorithm?

Interview Preparation Tips

Interview preparation tips for other job seekers - Be very serious on every answer
Interview experience
5
Excellent
Difficulty level
-
Process Duration
-
Result
-
Round 1 - Resume Shortlist 
Pro Tip by AmbitionBox:
Keep your resume crisp and to the point. A recruiter looks at your resume for an average of 6 seconds, make sure to leave the best impression.
View all tips
Round 2 - Coding Test 

Basic DP, Array Questions

Round 3 - One-on-one 

(1 Question)

  • Q1. Resume Walkthrough and Discussion, Medium level coding questions
Round 4 - One-on-one 

(1 Question)

  • Q1. Discussion with Manager
Round 5 - HR 

(1 Question)

  • Q1. Normal HR round

I applied via Naukri.com and was interviewed before Mar 2021. There was 1 interview round.

Round 1 - Technical 

(1 Question)

  • Q1. About Resume and basic ML

Interview Preparation Tips

Interview preparation tips for other job seekers - Don't join this company as it has no real ML projects but POC on dummy data

Zebra Technologies Interview FAQs

How many rounds are there in Zebra Technologies Data Scientist interview?
Zebra Technologies interview process usually has 2 rounds. The most common rounds in the Zebra Technologies interview process are Case Study and Technical.
How to prepare for Zebra Technologies Data Scientist interview?
Go through your CV in detail and study all the technologies mentioned in your CV. Prepare at least two technologies or languages in depth if you are appearing for a technical interview at Zebra Technologies. The most common topics and skills that interviewers at Zebra Technologies expect are Machine Learning, Data Mining, Data Analysis, Hadoop and R.
What are the top questions asked in Zebra Technologies Data Scientist interview?

Some of the top questions asked at the Zebra Technologies Data Scientist interview -

  1. What is difference between bias and varia...read more
  2. Parametric vs non parametruc mo...read more

Tell us how to improve this page.

Fast track your campus placements

View all
Zebra Technologies Data Scientist Salary
based on 16 salaries
₹9.8 L/yr - ₹27.5 L/yr
25% more than the average Data Scientist Salary in India
View more details

Zebra Technologies Data Scientist Reviews and Ratings

based on 2 reviews

4.6/5

Rating in categories

4.6

Skill development

4.6

Work-Life balance

4.2

Salary & Benefits

4.6

Job Security

4.6

Company culture

3.4

Promotions/Appraisal

4.2

Work Satisfaction

Explore 2 Reviews and Ratings
Data Scientist

Pune,

Bangalore / Bengaluru

2-4 Yrs

Not Disclosed

Explore more jobs
Software Engineer
115 salaries
unlock blur

₹5 L/yr - ₹19.6 L/yr

Senior Software Engineer
94 salaries
unlock blur

₹10 L/yr - ₹35 L/yr

Software Engineer2
44 salaries
unlock blur

₹9.6 L/yr - ₹25.3 L/yr

Technical Lead
43 salaries
unlock blur

₹14.2 L/yr - ₹38 L/yr

Lead Engineer
41 salaries
unlock blur

₹15 L/yr - ₹30 L/yr

Explore more salaries
Compare Zebra Technologies with

Accenture

3.9
Compare

Wipro

3.7
Compare

Cognizant

3.8
Compare

Capgemini

3.8
Compare

Calculate your in-hand salary

Confused about how your in-hand salary is calculated? Enter your annual salary (CTC) and get your in-hand salary
Did you find this page helpful?
Yes No
write
Share an Interview