Filter interviews by
Pooling in CNNs has learning but reduces spatial resolution.
Pooling helps in reducing overfitting by summarizing the features learned in a region.
Max pooling retains the strongest feature in a region while average pooling takes the average.
Pooling reduces the spatial resolution of the feature maps.
Pooling can also help in translation invariance.
However, too much pooling can lead to loss of important information.
Correlation is a statistical measure that shows how two variables are related to each other.
Correlation measures the strength and direction of the relationship between two variables.
It ranges from -1 to 1, where -1 indicates a perfect negative correlation, 0 indicates no correlation, and 1 indicates a perfect positive correlation.
Correlation does not imply causation, meaning that just because two variables are cor...
P-values are a statistical measure that helps determine the likelihood of obtaining a result by chance.
P-values range from 0 to 1, with a smaller value indicating stronger evidence against the null hypothesis.
A p-value of 0.05 or less is typically considered statistically significant.
P-values are commonly used in hypothesis testing to determine if a result is statistically significant or not.
Multicollinearity is a phenomenon where two or more independent variables in a regression model are highly correlated.
It can lead to unstable and unreliable estimates of regression coefficients.
It can also make it difficult to determine the individual effect of each independent variable on the dependent variable.
It can be detected using correlation matrices or variance inflation factors (VIF).
Solutions include rem...
Gradients are the changes in values of a function with respect to its variables.
Gradients are used in calculus to measure the rate of change of a function.
They are represented as vectors and indicate the direction of steepest ascent.
Gradients are used in optimization problems to find the minimum or maximum value of a function.
They are also used in physics to calculate the force acting on a particle.
Gradients can b...
Boosting and bagging are ensemble learning techniques used to improve model performance.
Bagging involves training multiple models on different subsets of the data and averaging their predictions.
Boosting involves training multiple models sequentially, with each model focusing on the errors of the previous model.
Bagging reduces variance and overfitting, while boosting reduces bias and underfitting.
Examples of baggi...
KNN during training stores all the data points and their corresponding labels to use for prediction.
KNN algorithm stores all the training data points and their corresponding labels.
It calculates the distance between the new data point and all the stored data points.
It selects the k-nearest neighbors based on the calculated distance.
It assigns the label of the majority of the k-nearest neighbors to the new data poi...
A logarithm is a mathematical function that measures the relationship between two quantities.
Logarithms are used to simplify complex calculations involving large numbers.
They are used in linear algebra to transform multiplicative relationships into additive ones.
Logarithms are also used in data analysis to transform skewed data into a more normal distribution.
Common logarithms use base 10, while natural logarithms...
LSTMs are better than RNNs due to their ability to handle long-term dependencies.
LSTMs have a memory cell that can store information for long periods of time.
They have gates that control the flow of information into and out of the cell.
This allows them to selectively remember or forget information.
Vanilla RNNs suffer from the vanishing gradient problem, which limits their ability to handle long-term dependencies.
L...
Optimizers are used to improve the efficiency and accuracy of the training process in machine learning models.
Optimizers help in finding the optimal set of weights for a given model by minimizing the loss function.
They use various techniques like momentum, learning rate decay, and adaptive learning rates to speed up the training process.
Optimizers also prevent the model from getting stuck in local minima and help ...
I applied via Referral and was interviewed in Apr 2024. There was 1 interview round.
I applied via Naukri.com and was interviewed in Jun 2022. There were 2 interview rounds.
Correlation is a statistical measure that shows how two variables are related to each other.
Correlation measures the strength and direction of the relationship between two variables.
It ranges from -1 to 1, where -1 indicates a perfect negative correlation, 0 indicates no correlation, and 1 indicates a perfect positive correlation.
Correlation does not imply causation, meaning that just because two variables are correlat...
Multicollinearity is a phenomenon where two or more independent variables in a regression model are highly correlated.
It can lead to unstable and unreliable estimates of regression coefficients.
It can also make it difficult to determine the individual effect of each independent variable on the dependent variable.
It can be detected using correlation matrices or variance inflation factors (VIF).
Solutions include removing...
P-values are a statistical measure that helps determine the likelihood of obtaining a result by chance.
P-values range from 0 to 1, with a smaller value indicating stronger evidence against the null hypothesis.
A p-value of 0.05 or less is typically considered statistically significant.
P-values are commonly used in hypothesis testing to determine if a result is statistically significant or not.
LSTMs are better than RNNs due to their ability to handle long-term dependencies.
LSTMs have a memory cell that can store information for long periods of time.
They have gates that control the flow of information into and out of the cell.
This allows them to selectively remember or forget information.
Vanilla RNNs suffer from the vanishing gradient problem, which limits their ability to handle long-term dependencies.
LSTMs ...
Pooling in CNNs has learning but reduces spatial resolution.
Pooling helps in reducing overfitting by summarizing the features learned in a region.
Max pooling retains the strongest feature in a region while average pooling takes the average.
Pooling reduces the spatial resolution of the feature maps.
Pooling can also help in translation invariance.
However, too much pooling can lead to loss of important information.
Optimizers are used to improve the efficiency and accuracy of the training process in machine learning models.
Optimizers help in finding the optimal set of weights for a given model by minimizing the loss function.
They use various techniques like momentum, learning rate decay, and adaptive learning rates to speed up the training process.
Optimizers also prevent the model from getting stuck in local minima and help in ge...
KNN during training stores all the data points and their corresponding labels to use for prediction.
KNN algorithm stores all the training data points and their corresponding labels.
It calculates the distance between the new data point and all the stored data points.
It selects the k-nearest neighbors based on the calculated distance.
It assigns the label of the majority of the k-nearest neighbors to the new data point.
Small change in one dimension causing drastic difference in model output. Explanation and solution.
This is known as sensitivity to input
It can be caused by non-linearities in the model or overfitting
Regularization techniques can be used to reduce sensitivity
Cross-validation can help identify overfitting
Ensemble methods can help reduce sensitivity
It is generally a bad thing as it indicates instability in the model
Slope and gradient are both measures of the steepness of a line, but slope is a ratio while gradient is a vector.
Slope is the ratio of the change in y to the change in x on a line.
Gradient is the rate of change of a function with respect to its variables.
Slope is a scalar value, while gradient is a vector.
Slope is used to describe the steepness of a line, while gradient is used to describe the direction and magnitude o...
Boosting and bagging are ensemble learning techniques used to improve model performance.
Bagging involves training multiple models on different subsets of the data and averaging their predictions.
Boosting involves training multiple models sequentially, with each model focusing on the errors of the previous model.
Bagging reduces variance and overfitting, while boosting reduces bias and underfitting.
Examples of bagging al...
A logarithm is a mathematical function that measures the relationship between two quantities.
Logarithms are used to simplify complex calculations involving large numbers.
They are used in linear algebra to transform multiplicative relationships into additive ones.
Logarithms are also used in data analysis to transform skewed data into a more normal distribution.
Common logarithms use base 10, while natural logarithms use ...
Gradients are the changes in values of a function with respect to its variables.
Gradients are used in calculus to measure the rate of change of a function.
They are represented as vectors and indicate the direction of steepest ascent.
Gradients are used in optimization problems to find the minimum or maximum value of a function.
They are also used in physics to calculate the force acting on a particle.
Gradients can be cal...
Top trending discussions
Code for parsing a triangle
Use a loop to iterate through each line of the triangle
Split each line into an array of numbers
Store the parsed numbers in a 2D array or a list of lists
The ASCII value is a numerical representation of a character. It includes both capital and small alphabets.
ASCII values range from 65 to 90 for capital letters A to Z.
ASCII values range from 97 to 122 for small letters a to z.
For example, the ASCII value of 'A' is 65 and the ASCII value of 'a' is 97.
I am open to further education to enhance my skills and stay updated with industry trends in data science.
Pursuing a master's degree in data science could deepen my knowledge in advanced analytics.
Online courses in machine learning and AI can help me stay current with emerging technologies.
Attending workshops and conferences can provide networking opportunities and insights from industry leaders.
Certifications in speci...
I applied via Job Portal and was interviewed in Jan 2021. There were 3 interview rounds.
I applied via LinkedIn and was interviewed in Mar 2021. There were 3 interview rounds.
I applied via Company Website and was interviewed before Jan 2020. There was 1 interview round.
I applied via Recruitment Consultant and was interviewed in Sep 2020. There were 3 interview rounds.
I applied via Campus Placement
I am a data scientist with expertise in statistical analysis, machine learning, and data visualization, passionate about solving complex problems.
Projects include predictive modeling for sales forecasting using regression analysis.
Developed a classification model for customer segmentation using k-means clustering.
Conducted A/B testing to evaluate the effectiveness of marketing strategies.
Utilized Python and R for data ...
I applied via Campus Placement and was interviewed before Sep 2020. There were 3 interview rounds.
Some of the top questions asked at the GeekBull Consulting interview -
based on 1 interview experience
Difficulty level
Duration
based on 2 reviews
Rating in categories
Software Engineer
6
salaries
| ₹4.5 L/yr - ₹7.5 L/yr |
Project Manager
4
salaries
| ₹6 L/yr - ₹8.4 L/yr |
Embedded Engineer
4
salaries
| ₹3 L/yr - ₹4.3 L/yr |
Data Science Intern
4
salaries
| ₹1 L/yr - ₹4 L/yr |
Embedded Software Engineer
3
salaries
| ₹4.2 L/yr - ₹9 L/yr |
TCS
Accenture
Wipro
Cognizant