Uber
Proud winner of ABECA 2024 - AmbitionBox Employee Choice Awards
Filter interviews by
Be the first one to contribute and help others!
I applied via LinkedIn and was interviewed before May 2020. There was 1 interview round.
I appeared for an interview in Nov 2020.
I applied via Campus Placement and was interviewed in Mar 2021. There was 1 interview round.
I applied via Company Website and was interviewed in May 2019. There were 5 interview rounds.
I applied via Campus Placement
Regex for email validation
Start with a string of characters followed by @ symbol
Followed by a string of characters and a period
End with a string of characters with a length of 2-6 characters
Allow for optional subdomains separated by periods
Disallow special characters except for . and _ in username
Print prime numbers in a given range and optimize the solution.
Use Sieve of Eratosthenes algorithm to generate prime numbers efficiently
Start with a boolean array of size n+1, mark all as true
Loop through the array and mark all multiples of each prime as false
Print all the indexes that are still marked as true
Find angle between hour and minute hand in a clock given the time.
Calculate the angle made by the hour hand with respect to 12 o'clock position
Calculate the angle made by the minute hand with respect to 12 o'clock position
Find the difference between the two angles and take the absolute value
If the angle is greater than 180 degrees, subtract it from 360 degrees to get the smaller angle
To un-hash a string, use a reverse algorithm to convert the hash back to the original string.
Create a reverse algorithm that takes the hash as input and outputs the original string
Use the same logic as the hash function but in reverse order
If the hash function used a specific algorithm, use the inverse of that algorithm to un-hash the string
Print the level order traversal of binary tree in spiral form
Perform level order traversal of the binary tree
Alternate the direction of traversal for each level
Use a stack to reverse the order of nodes in each level
Print the nodes in the order of traversal
Find the maximum element in each subarray of size k in a given array.
Iterate through the array from index 0 to n-k.
For each subarray of size k, find the maximum element.
Store the maximum elements in a separate array.
Return the array of maximum elements.
To find the Kth largest element in two sorted arrays, we can use the merge step of merge sort algorithm.
Merge the two arrays into a single sorted array using a modified merge sort algorithm.
Return the Kth element from the merged array.
Merge two sorted arrays into one sorted array with expected time complexity of (m+n).
Use a two-pointer approach to compare elements from both arrays and merge them into the first array.
Start comparing elements from the end of both arrays and place the larger element at the end of the first array.
Continue this process until all elements from the second array are merged into the first array.
The algorithm finds the position of the 3rd occurrence of 'B' in an n-ary tree from a given index in constant time complexity.
Traverse the n-ary tree using a depth-first search (DFS) algorithm
Keep track of the count of 'B' occurrences
When the count reaches 3, return the current position
If the end of the tree is reached before the 3rd 'B', return -1
Check if a given string is a composite of two words from a limited dictionary.
Create a hash set of all the words in the dictionary.
Iterate through all possible pairs of substrings in the given string.
Check if both substrings are present in the hash set.
If yes, return true. Else, return false.
Switch adjacent nodes in a single linked list.
Traverse the linked list and swap adjacent nodes.
Keep track of previous node to update its next pointer.
Handle edge cases for first two nodes and last node.
Example: 1->2->3->4 becomes 2->1->4->3.
Traverse only the left sub-tree of a binary search tree.
Start at the root node
If the left child exists, visit it and repeat the process
If the left child does not exist, return to the parent node
Continue until all nodes in the left sub-tree have been visited
Design an efficient data structure for two lifts in a building of n floors.
Use a priority queue to keep track of the floors each lift is heading to
Implement a scheduling algorithm to determine which lift to assign to a new request
Consider adding a weight limit to each lift to prevent overloading
Use a hash table to keep track of the current location of each lift
To find the maximum number that can be formed from the digits of an integer.
Convert the integer to a string
Sort the characters in descending order
Join the sorted characters to form the maximum number
Driver
571
salaries
| ₹0.9 L/yr - ₹7.2 L/yr |
CAR Driver
357
salaries
| ₹0.8 L/yr - ₹5.1 L/yr |
Software Engineer
144
salaries
| ₹25 L/yr - ₹100 L/yr |
Data Analyst
142
salaries
| ₹5.4 L/yr - ₹23.3 L/yr |
Senior Software Engineer
140
salaries
| ₹27.5 L/yr - ₹110 L/yr |
Amazon
Ola Cabs
Airbnb