Filter interviews by
I applied via LinkedIn and was interviewed in Feb 2024. There was 1 interview round.
Top trending discussions
I applied via Naukri.com and was interviewed in Nov 2024. There was 1 interview round.
I applied via Referral and was interviewed in Nov 2024. There was 1 interview round.
I applied via Naukri.com and was interviewed in Jul 2024. There were 2 interview rounds.
I am a data scientist with a background in statistics and machine learning, passionate about solving complex problems using data-driven approaches.
Background in statistics and machine learning
Experience in solving complex problems using data-driven approaches
Passionate about leveraging data to drive insights and decision-making
Developed a predictive model for customer churn in a telecom company.
Collected and cleaned customer data including usage patterns and demographics.
Used machine learning algorithms such as logistic regression and random forest to build the model.
Evaluated model performance using metrics like accuracy, precision, and recall.
Implemented the model into the company's CRM system for real-time predictions.
I applied via Naukri.com and was interviewed in Jul 2024. There was 1 interview round.
Stemming and lemmatization are techniques used in natural language processing to reduce words to their base or root form.
Stemming is a process of reducing words to their base form by removing suffixes.
Lemmatization is a process of reducing words to their base form by considering the context and part of speech.
Stemming is faster but may not always produce a valid word, while lemmatization is slower but produces valid wo...
Multicollinearity can be measured using correlation matrix, variance inflation factor (VIF), or eigenvalues.
Calculate the correlation matrix to identify highly correlated variables.
Use the variance inflation factor (VIF) to quantify the extent of multicollinearity.
Check for high eigenvalues in the correlation matrix, indicating multicollinearity.
Consider using dimensionality reduction techniques like principal componen
Numpy,pandas,data analysis
Supervised learning uses labeled data to train a model, while unsupervised learning uses unlabeled data.
Supervised learning requires a target variable for training the model.
Examples of supervised learning include classification and regression.
Unsupervised learning finds patterns and relationships in data without a target variable.
Examples of unsupervised learning include clustering and dimensionality reduction.
Sigmoid function is a mathematical function that maps any real value to a value between 0 and 1.
Used in machine learning for binary classification problems to produce probabilities
Commonly used in logistic regression
Has an S-shaped curve
Equation: f(x) = 1 / (1 + e^(-x))
Security Analyst
3
salaries
| ₹3.6 L/yr - ₹3.6 L/yr |
TCS
Accenture
Wipro
Cognizant