Accenture
Proud winner of ABECA 2024 - AmbitionBox Employee Choice Awards
Filter interviews by
I applied via LinkedIn and was interviewed before Feb 2023. There were 2 interview rounds.
Supervised models include linear regression, logistic regression, decision trees, random forests, support vector machines, and neural networks.
Linear regression: used for predicting continuous outcomes
Logistic regression: used for binary classification
Decision trees: used for classification and regression tasks
Random forests: ensemble method using multiple decision trees
Support vector machines: used for classification ...
I applied via Company Website and was interviewed in Sep 2023. There were 3 interview rounds.
Normal there is not advance requirment
Machine learning is a branch of artificial intelligence that focuses on developing algorithms and models that can learn from and make predictions or decisions based on data.
Machine learning involves training algorithms to learn patterns from data and make predictions or decisions.
It can be supervised, unsupervised, or semi-supervised learning.
Examples include recommendation systems, image recognition, and natural langu
A cloud platform is a service that allows users to store, manage, and process data remotely.
Cloud platforms provide scalable and flexible storage solutions
They offer various services such as computing power, databases, and analytics tools
Examples include Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform
A pointer is a variable that stores the memory address of another variable.
Pointers are used to access and manipulate memory directly.
They are commonly used in programming languages like C and C++.
Example: int *ptr; // declaring a pointer variable
I applied via Approached by Company and was interviewed in Sep 2024. There was 1 interview round.
I applied via Recruitment Consulltant and was interviewed in Jul 2024. There were 3 interview rounds.
I applied via Job Portal and was interviewed in Apr 2024. There was 1 interview round.
XGBoost is a powerful machine learning algorithm known for its speed and performance in handling large datasets.
XGBoost stands for eXtreme Gradient Boosting, which is an implementation of gradient boosting machines.
It is widely used in machine learning competitions and is known for its speed and performance.
XGBoost uses a technique called boosting, where multiple weak learners are combined to create a strong learner.
It...
XgBoost algorithm uses a greedy approach to determine splits based on feature importance.
XgBoost algorithm calculates the information gain for each feature to determine the best split.
The feature with the highest information gain is chosen for the split.
This process is repeated recursively for each node in the tree.
Features can be split based on numerical values or categories.
Example: If a feature like 'age' has the hi...
Yes, I have experience working on cloud platforms such as AWS and Google Cloud.
Experience with AWS services like S3, EC2, and Redshift
Familiarity with Google Cloud services like BigQuery and Compute Engine
Utilized cloud platforms for data storage, processing, and analysis
Entropy is a measure of randomness or uncertainty in a dataset, while information gain is the reduction in entropy after splitting a dataset based on a feature.
Entropy is used in decision tree algorithms to determine the best feature to split on.
Information gain measures the effectiveness of a feature in classifying the data.
Higher information gain indicates that a feature is more useful for splitting the data.
Entropy ...
Hypothesis testing is a statistical method used to make inferences about a population based on sample data.
Hypothesis testing involves formulating a null hypothesis and an alternative hypothesis.
The null hypothesis is assumed to be true until there is enough evidence to reject it.
Statistical tests are used to determine the likelihood of observing the data if the null hypothesis is true.
The p-value is used to determine ...
Precision and recall are metrics used in evaluating the performance of classification models.
Precision measures the accuracy of positive predictions, while recall measures the ability of the model to find all positive instances.
Precision = TP / (TP + FP)
Recall = TP / (TP + FN)
Precision is important when false positives are costly, while recall is important when false negatives are costly.
For example, in a spam email de...
Data imbalance refers to unequal distribution of classes in a dataset, where one class has significantly more samples than others.
Data imbalance can lead to biased models that favor the majority class.
It can result in poor performance for minority classes, as the model may struggle to accurately predict them.
Techniques like oversampling, undersampling, and using different evaluation metrics can help address data imbala...
SMOTE stands for Synthetic Minority Over-sampling Technique, used to balance imbalanced datasets by generating synthetic samples.
SMOTE is commonly used in machine learning to address class imbalance by creating synthetic samples of the minority class.
It works by generating new instances of the minority class by interpolating between existing instances.
SMOTE is particularly useful in scenarios where the minority class i...
Supervised learning uses labeled data to train a model, while unsupervised learning uses unlabeled data.
Supervised learning requires a target variable for training the model.
Examples of supervised learning include classification and regression.
Unsupervised learning finds patterns and relationships in data without a target variable.
Examples of unsupervised learning include clustering and dimensionality reduction.
Sigmoid function is a mathematical function that maps any real value to a value between 0 and 1.
Used in machine learning for binary classification problems to produce probabilities
Commonly used in logistic regression
Has an S-shaped curve
Equation: f(x) = 1 / (1 + e^(-x))
I applied via Naukri.com and was interviewed in Nov 2023. There were 3 interview rounds.
Logical reasoning, current affairs, numericals
I applied via Company Website and was interviewed in Nov 2023. There was 1 interview round.
I applied via Approached by Company and was interviewed in May 2022. There were 3 interview rounds.
Outliers can be handled by removing, transforming or imputing them. Imbalanced datasets can be handled by resampling techniques. Feature engineering involves creating new features from existing ones.
Outliers can be removed using statistical methods like z-score or IQR.
Outliers can be transformed using techniques like log transformation or box-cox transformation.
Outliers can be imputed using techniques like mean imputat...
Some of the top questions asked at the Accenture Jr. Data Scientist interview for experienced candidates -
based on 1 review
Rating in categories
Application Development Analyst
38.9k
salaries
| ₹3 L/yr - ₹12 L/yr |
Application Development - Senior Analyst
27.1k
salaries
| ₹6.8 L/yr - ₹20.2 L/yr |
Team Lead
24.1k
salaries
| ₹7 L/yr - ₹25.1 L/yr |
Senior Software Engineer
18.4k
salaries
| ₹6 L/yr - ₹19 L/yr |
Software Engineer
17.6k
salaries
| ₹3.6 L/yr - ₹12.8 L/yr |
TCS
Cognizant
Capgemini
Infosys