Filter interviews by
Be the first one to contribute and help others!
I applied via Referral and was interviewed in Nov 2024. There was 1 interview round.
I applied via Approached by Company and was interviewed in Aug 2024. There were 2 interview rounds.
*****, arjumpudi satyanarayana
Python is a high-level programming language known for its simplicity and readability.
Python is widely used for web development, data analysis, artificial intelligence, and scientific computing.
It emphasizes code readability and uses indentation for block delimiters.
Python has a large standard library and a vibrant community of developers.
Example: print('Hello, World!')
Example: import pandas as pd
Code problems refer to issues or errors in the code that need to be identified and fixed.
Code problems can include syntax errors, logical errors, or performance issues.
Examples of code problems include missing semicolons, incorrect variable assignments, or inefficient algorithms.
Identifying and resolving code problems is a key skill for data scientists to ensure accurate and efficient data analysis.
Python code is a programming language used for data analysis, machine learning, and scientific computing.
Python code is written in a text editor or an integrated development environment (IDE)
Python code is executed using a Python interpreter
Python code can be used for data manipulation, visualization, and modeling
The project is a machine learning model to predict customer churn for a telecommunications company.
Developing predictive models using machine learning algorithms
Analyzing customer data to identify patterns and trends
Evaluating model performance and making recommendations for reducing customer churn
The question seems to be incomplete or misspelled.
It is possible that the interviewer made a mistake while asking the question.
Ask for clarification or context to provide a relevant answer.
I applied via Naukri.com and was interviewed in Jul 2024. There were 2 interview rounds.
I am a data scientist with a background in statistics and machine learning, passionate about solving complex problems using data-driven approaches.
Background in statistics and machine learning
Experience in solving complex problems using data-driven approaches
Passionate about leveraging data to drive insights and decision-making
Developed a predictive model for customer churn in a telecom company.
Collected and cleaned customer data including usage patterns and demographics.
Used machine learning algorithms such as logistic regression and random forest to build the model.
Evaluated model performance using metrics like accuracy, precision, and recall.
Implemented the model into the company's CRM system for real-time predictions.
I applied via Naukri.com and was interviewed in Jul 2024. There was 1 interview round.
Context window in LLMs refers to the number of surrounding words considered when predicting the next word in a sequence.
Context window helps LLMs capture dependencies between words in a sentence.
A larger context window allows the model to consider more context but may lead to increased computational complexity.
For example, in a context window of 2, the model considers 2 words before and 2 words after the target word fo
top_k parameter is used to specify the number of top elements to be returned in a result set.
top_k parameter is commonly used in machine learning algorithms to limit the number of predictions or recommendations.
For example, in recommendation systems, setting top_k=5 will return the top 5 recommended items for a user.
In natural language processing tasks, top_k can be used to limit the number of possible next words in a
Regex patterns in Python are sequences of characters that define a search pattern.
Regex patterns are used for pattern matching and searching in strings.
They are created using the 're' module in Python.
Examples of regex patterns include searching for email addresses, phone numbers, or specific words in a text.
Iterators are objects that allow iteration over a sequence of elements. Tuples are immutable sequences of elements.
Iterators are used to loop through elements in a collection, like lists or dictionaries
Tuples are similar to lists but are immutable, meaning their elements cannot be changed
Example of iterator: for item in list: print(item)
Example of tuple: my_tuple = (1, 2, 3)
Yes, I have experience working with REST APIs in various projects.
Developed RESTful APIs using Python Flask framework
Consumed REST APIs in data analysis projects using requests library
Used Postman for testing and debugging REST APIs
I applied via Naukri.com and was interviewed in Mar 2024. There were 3 interview rounds.
Machine learning algorithms are tools used to analyze data, identify patterns, and make predictions without being explicitly programmed.
Machine learning algorithms can be categorized into supervised, unsupervised, and reinforcement learning.
Examples of machine learning algorithms include linear regression, decision trees, support vector machines, and neural networks.
These algorithms require training data to learn patte...
Developing a credit risk model involves several steps to assess the likelihood of a borrower defaulting on a loan.
1. Define the problem and objectives of the credit risk model.
2. Gather relevant data such as credit history, income, debt-to-income ratio, etc.
3. Preprocess the data by handling missing values, encoding categorical variables, and scaling features.
4. Select a suitable machine learning algorithm such as logi...
AIC and BIC are statistical measures used for model selection in the context of regression analysis.
AIC (Akaike Information Criterion) is used to compare the goodness of fit of different models. It penalizes the model for the number of parameters used.
BIC (Bayesian Information Criterion) is similar to AIC but penalizes more heavily for the number of parameters, making it more suitable for model selection when the focus...
XGBoost is a popular gradient boosting library while LightGBM is a faster and more memory-efficient alternative.
XGBoost is known for its accuracy and performance on structured/tabular data.
LightGBM is faster and more memory-efficient, making it suitable for large datasets.
LightGBM uses a histogram-based algorithm for splitting whereas XGBoost uses a level-wise tree growth strategy.
I applied via Naukri.com and was interviewed in Jul 2024. There was 1 interview round.
Count the number of duplicate words in a string.
Split the string into words using a delimiter like space or punctuation.
Create a dictionary to store the count of each word.
Iterate through the words and increment the count in the dictionary.
Count the number of words with count greater than 1 as duplicates.
Chunking in LLM refers to breaking down text into smaller chunks for better processing by the language model.
Chunking helps improve the efficiency of the language model by breaking down large text inputs into smaller segments.
It can help the model better understand the context and relationships within the text.
Chunking is commonly used in natural language processing tasks such as text summarization and sentiment analys
Very easy and but selection is basis
We are looking to hire incredible Python Developers interested in working with a US Startup. If you are truly passionate about designing and building machine learning solutions using python, you’re looking for a job where you can work from anywhere- and we mean anywhere and are excited about gaining experience in a Startup, then this is the position for you. Be it your next vacation spot or a farm out in the country, if you have working internet, you can work remotely from your chosen location. No long commutes or rushing to in-person meetings. Ready to work hard and play harder? Let’s work together.
Stemming and lemmatization are techniques used in natural language processing to reduce words to their base or root form.
Stemming is a process of reducing words to their base form by removing suffixes.
Lemmatization is a process of reducing words to their base form by considering the context and part of speech.
Stemming is faster but may not always produce a valid word, while lemmatization is slower but produces valid wo...
Multicollinearity can be measured using correlation matrix, variance inflation factor (VIF), or eigenvalues.
Calculate the correlation matrix to identify highly correlated variables.
Use the variance inflation factor (VIF) to quantify the extent of multicollinearity.
Check for high eigenvalues in the correlation matrix, indicating multicollinearity.
Consider using dimensionality reduction techniques like principal componen
Math Expert
5
salaries
| ₹2.1 L/yr - ₹4 L/yr |
SME
4
salaries
| ₹2 L/yr - ₹4 L/yr |
BYJU'S
Unacademy
Toppr
Vedant