Filter interviews by
I sell my product by highlighting its unique features and benefits, and by demonstrating its value to potential customers.
Identify the unique features and benefits of the product
Create a compelling sales pitch that highlights these features and benefits
Demonstrate the value of the product through examples or case studies
Address any objections or concerns raised by potential customers
Close the sale by offering incentive
Top trending discussions
I applied via Recruitment Consulltant
I applied via Naukri.com and was interviewed in Nov 2024. There were 2 interview rounds.
The Aptitude Test session accesses mathematical and logical reasoning abilities
posted on 10 Jan 2025
I applied via Approached by Company and was interviewed in Dec 2024. There was 1 interview round.
I applied via Naukri.com and was interviewed in Oct 2024. There were 2 interview rounds.
Optimizing SQL queries involves using indexes, avoiding unnecessary joins, and optimizing the query structure.
Use indexes on columns frequently used in WHERE clauses
Avoid using SELECT * and only retrieve necessary columns
Optimize joins by using INNER JOIN instead of OUTER JOIN when possible
Use EXPLAIN to analyze query performance and make necessary adjustments
Performance optimization in Spark involves tuning configurations, optimizing code, and utilizing caching.
Tune Spark configurations such as executor memory, number of executors, and shuffle partitions.
Optimize code by reducing unnecessary shuffles, using efficient transformations, and avoiding unnecessary data movements.
Utilize caching to store intermediate results in memory and avoid recomputation.
Example: In my projec...
SparkContext is the main entry point for Spark functionality, while SparkSession is the entry point for Spark SQL.
SparkContext is the entry point for low-level API functionality in Spark.
SparkSession is the entry point for Spark SQL functionality.
SparkContext is used to create RDDs (Resilient Distributed Datasets) in Spark.
SparkSession provides a unified entry point for reading data from various sources and performing
When a spark job is submitted, various steps are executed at the backend to process the job.
The job is submitted to the Spark driver program.
The driver program communicates with the cluster manager to request resources.
The cluster manager allocates resources (CPU, memory) to the job.
The driver program creates DAG (Directed Acyclic Graph) of the job stages and tasks.
Tasks are then scheduled and executed on worker nodes ...
Calculate second highest salary using SQL and pyspark
Use SQL query with ORDER BY and LIMIT to get the second highest salary
In pyspark, use orderBy() and take() functions to achieve the same result
The two types of modes for Spark architecture are standalone mode and cluster mode.
Standalone mode: Spark runs on a single machine with a single JVM and is suitable for development and testing.
Cluster mode: Spark runs on a cluster of machines managed by a cluster manager like YARN or Mesos for production workloads.
Client mode is better for very less latency due to direct communication with the cluster.
Client mode allows direct communication with the cluster, reducing latency.
Standalone mode requires an additional layer of communication, increasing latency.
Client mode is preferred for real-time applications where low latency is crucial.
I applied via Naukri.com and was interviewed in Nov 2024. There was 1 interview round.
I am a Senior Data Engineer with experience in building scalable data pipelines and optimizing data processing workflows.
Experience in designing and implementing ETL processes using tools like Apache Spark and Airflow
Proficient in working with large datasets and optimizing query performance
Strong background in data modeling and database design
Worked on projects involving real-time data processing and streaming analytic
Decorators in Python are functions that modify the behavior of other functions or methods.
Decorators are defined using the @decorator_name syntax before a function definition.
They can be used to add functionality to existing functions without modifying their code.
Decorators can be used for logging, timing, authentication, and more.
Example: @staticmethod decorator in Python is used to define a static method in a class.
SQL query to group by employee ID and combine first name and last name with a space
Use the GROUP BY clause to group by employee ID
Use the CONCAT function to combine first name and last name with a space
Select employee ID, CONCAT(first_name, ' ', last_name) AS full_name
Constructors in Python are special methods used for initializing objects. They are called automatically when a new instance of a class is created.
Constructors are defined using the __init__() method in a class.
They are used to initialize instance variables of a class.
Example: class Person: def __init__(self, name, age): self.name = name self.age = age person1 = Person('Alice', 30)
Indexing in SQL is a technique used to improve the performance of queries by creating a data structure that allows for faster retrieval of data.
Indexes are created on columns in a database table to speed up the retrieval of rows that match a certain condition in a WHERE clause.
Indexes can be created using CREATE INDEX statement in SQL.
Types of indexes include clustered indexes, non-clustered indexes, unique indexes, an...
Spark works well with Parquet files due to its columnar storage format, efficient compression, and ability to push down filters.
Parquet files are columnar storage format, which aligns well with Spark's processing model of working on columns rather than rows.
Parquet files support efficient compression, reducing storage space and improving read performance in Spark.
Spark can push down filters to Parquet files, allowing f...
I applied via Recruitment Consulltant and was interviewed in Nov 2024. There were 2 interview rounds.
Different types of joins available in Databricks include inner join, outer join, left join, right join, and cross join.
Inner join: Returns only the rows that have matching values in both tables.
Outer join: Returns all rows when there is a match in either table.
Left join: Returns all rows from the left table and the matched rows from the right table.
Right join: Returns all rows from the right table and the matched rows ...
Implementing fault tolerance in a data pipeline involves redundancy, monitoring, and error handling.
Use redundant components to ensure continuous data flow
Implement monitoring tools to detect failures and bottlenecks
Set up automated alerts for immediate response to issues
Design error handling mechanisms to gracefully handle failures
Use checkpoints and retries to ensure data integrity
AutoLoader is a feature in data engineering that automatically loads data from various sources into a data warehouse or database.
Automates the process of loading data from different sources
Reduces manual effort and human error
Can be scheduled to run at specific intervals
Examples: Apache Nifi, AWS Glue
To connect to different services in Azure, you can use Azure SDKs, REST APIs, Azure Portal, Azure CLI, and Azure PowerShell.
Use Azure SDKs for programming languages like Python, Java, C#, etc.
Utilize REST APIs to interact with Azure services programmatically.
Access and manage services through the Azure Portal.
Leverage Azure CLI for command-line interface interactions.
Automate tasks using Azure PowerShell scripts.
Linked Services are connections to external data sources or destinations in Azure Data Factory.
Linked Services define the connection information needed to connect to external data sources or destinations.
They can be used in Data Factory pipelines to read from or write to external systems.
Examples of Linked Services include Azure Blob Storage, Azure SQL Database, and Amazon S3.
I applied via Recruitment Consulltant and was interviewed in Nov 2024. There was 1 interview round.
Bigtable is a NoSQL database for real-time analytics, while BigQuery is a fully managed data warehouse for running SQL queries.
Bigtable is a NoSQL database designed for real-time analytics and high throughput, while BigQuery is a fully managed data warehouse for running SQL queries.
Bigtable is used for storing large amounts of semi-structured data, while BigQuery is used for analyzing structured data using SQL queries.
...
To remove duplicate rows from BigQuery, use the DISTINCT keyword. To find the month of a given date, use the EXTRACT function.
To remove duplicate rows, use SELECT DISTINCT * FROM table_name;
To find the month of a given date, use SELECT EXTRACT(MONTH FROM date_column) AS month_name FROM table_name;
Make sure to replace 'table_name' and 'date_column' with the appropriate values in your query.
The operator used in Composer to move data from GCS to BigQuery is the GCS to BigQuery operator.
The GCS to BigQuery operator is used in Apache Airflow, which is the underlying technology of Composer.
This operator allows you to transfer data from Google Cloud Storage (GCS) to BigQuery.
You can specify the source and destination parameters in the operator to define the data transfer process.
Code to square each element in the input array.
Iterate through the input array and square each element.
Store the squared values in a new array to get the desired output.
Dataflow is a fully managed stream and batch processing service, while Dataproc is a managed Apache Spark and Hadoop service.
Dataflow is a serverless data processing service that automatically scales to handle your data, while Dataproc is a managed Spark and Hadoop service that requires you to provision and manage clusters.
Dataflow is designed for both batch and stream processing, allowing you to process data in real-t...
BigQuery architecture includes storage, execution, and optimization components for efficient query processing.
BigQuery stores data in Capacitor storage system for fast access.
Query execution is distributed across multiple nodes for parallel processing.
Query optimization techniques include partitioning tables, clustering tables, and using query cache.
Using partitioned tables can help eliminate scanning unnecessary data.
...
RDD vs dataframe vs dataset in PySpark
RDD (Resilient Distributed Dataset) is the basic abstraction in PySpark, representing a distributed collection of objects
Dataframe is a distributed collection of data organized into named columns, similar to a table in a relational database
Dataset is a distributed collection of data with the ability to use custom classes for type safety and user-defined functions
Dataframes and Data...
I applied via Recruitment Consulltant and was interviewed in Nov 2024. There were 2 interview rounds.
I have a background in data analysis with experience in using tools like Python, SQL, and Tableau.
I have a degree in Statistics and have worked as a Data Analyst for 3 years.
My daily activities include cleaning and analyzing data, creating visualizations, and presenting insights to stakeholders.
I use Python for data manipulation and analysis, SQL for querying databases, and Tableau for creating interactive dashboards.
I...
Advanced Excel and Power BI are tools used for data analysis and visualization in companies and for clients.
Advanced Excel allows for complex data manipulation, analysis, and visualization using features like pivot tables, macros, and VBA programming.
Power BI is a business analytics tool that provides interactive visualizations and business intelligence capabilities, connecting to various data sources.
These tools are u...
I have extensive experience in using Advanced Excel and Power BI for data analysis projects.
Created complex formulas and macros in Excel to automate data processing tasks
Designed interactive dashboards in Power BI to visualize and analyze data trends
Integrated data from multiple sources into Power BI for comprehensive analysis
Used Power Query and Power Pivot in Excel to manipulate and analyze large datasets
Provided dat...
Credit and operations concepts in relation to KYC procedures and client data privacy.
Credit refers to the extension of money or resources to a client based on their financial history and ability to repay.
Operations involve the day-to-day processes and procedures within a financial institution to ensure smooth functioning.
KYC procedures are used to verify the identity of clients to prevent fraud and money laundering.
Pri...
posted on 17 Jul 2024
I applied via Naukri.com and was interviewed in Aug 2024. There were 2 interview rounds.
I am a Senior Data Engineer with experience in developing data pipelines and optimizing data storage for various projects.
Developed data pipelines using Apache Spark for real-time data processing
Optimized data storage using technologies like Hadoop and AWS S3
Worked on a project to analyze customer behavior and improve marketing strategies
My day-to-day job in the project involved designing and implementing data pipelines, optimizing data workflows, and collaborating with cross-functional teams.
Designing and implementing data pipelines to extract, transform, and load data from various sources
Optimizing data workflows to improve efficiency and performance
Collaborating with cross-functional teams including data scientists, analysts, and business stakeholde...
DAGs handle fault tolerance by rerunning failed tasks and maintaining task dependencies.
DAGs rerun failed tasks automatically to ensure completion.
DAGs maintain task dependencies to ensure proper sequencing.
DAGs can be configured to retry failed tasks a certain number of times before marking them as failed.
Shuffling is the process of redistributing data across partitions in a distributed computing environment.
Shuffling is necessary when data needs to be grouped or aggregated across different partitions.
It can be handled efficiently by minimizing the amount of data being shuffled and optimizing the partitioning strategy.
Techniques like partitioning, combiners, and reducers can help reduce the amount of shuffling in MapRed
Repartition increases or decreases the number of partitions in a DataFrame, while Coalesce only decreases the number of partitions.
Repartition can increase or decrease the number of partitions in a DataFrame, leading to a shuffle of data across the cluster.
Coalesce only decreases the number of partitions in a DataFrame without performing a full shuffle, making it more efficient than repartition.
Repartition is typically...
Incremental data is handled by identifying new data since the last update and merging it with existing data.
Identify new data since last update
Merge new data with existing data
Update data warehouse or database with incremental changes
SCD stands for Slowly Changing Dimension, a concept in data warehousing to track changes in data over time.
SCD is used to maintain historical data in a data warehouse.
There are three types of SCD - Type 1, Type 2, and Type 3.
Type 1 SCD overwrites old data with new data.
Type 2 SCD creates a new record for each change, preserving history.
Type 3 SCD maintains both old and new values in the same record.
SCD is important for...
Reverse a string using SQL and Python codes.
In SQL, use the REVERSE function to reverse a string.
In Python, use slicing with a step of -1 to reverse a string.
Use Spark and SQL to find the top 5 countries with the highest population.
Use Spark to load the data and perform data processing.
Use SQL queries to group by country and sum the population.
Order the results in descending order and limit to top 5.
Example: SELECT country, SUM(population) AS total_population FROM table_name GROUP BY country ORDER BY total_population DESC LIMIT 5
To find different records for different joins using two tables
Use the SQL query to perform different joins like INNER JOIN, LEFT JOIN, RIGHT JOIN, and FULL JOIN
Identify the key columns in both tables to join on
Select the columns from both tables and use WHERE clause to filter out the different records
A catalyst optimizer is a query optimization tool used in Apache Spark to improve performance by generating an optimal query plan.
Catalyst optimizer is a rule-based query optimization framework in Apache Spark.
It leverages rules to transform the logical query plan into a more optimized physical plan.
The optimizer applies various optimization techniques like predicate pushdown, constant folding, and join reordering.
By o...
Used query optimization techniques to improve performance in database queries.
Utilized indexing to speed up search queries.
Implemented query caching to reduce redundant database calls.
Optimized SQL queries by restructuring joins and subqueries.
Utilized database partitioning to improve query performance.
Used query profiling tools to identify and optimize slow queries.
Use the len() function to check the length of the data frame.
Use len() function to get the number of rows in the data frame.
If the length is 0, then the data frame is empty.
Example: if len(df) == 0: print('Data frame is empty')
Cores and worker nodes are decided based on the workload requirements and scalability needs of the data processing system.
Consider the size and complexity of the data being processed
Evaluate the processing speed and memory requirements of the tasks
Take into account the parallelism and concurrency needed for efficient data processing
Monitor the system performance and adjust cores and worker nodes as needed
Enforcing schema ensures that data conforms to a predefined structure and rules.
Ensures data integrity by validating incoming data against predefined schema
Helps in maintaining consistency and accuracy of data
Prevents data corruption and errors in data processing
Can lead to rejection of data that does not adhere to the schema
Security Analyst
3
salaries
| ₹3 L/yr - ₹3.2 L/yr |
TCS
Accenture
Wipro
Cognizant