Filter interviews by
I applied via Referral and was interviewed before Feb 2021. There were 3 interview rounds.
Projects, ml advanced
posted on 14 Jun 2024
I applied via Referral and was interviewed in May 2024. There was 1 interview round.
Linear regression is a statistical method used to model the relationship between a dependent variable and one or more independent variables.
Collect data on the variables of interest
Plot the data to visualize the relationship between the variables
Choose a suitable linear regression model (simple or multiple)
Fit the model to the data using a regression algorithm (e.g. least squares)
Evaluate the model's performance using ...
Linear Regression minimizes noise by fitting a line that best represents the relationship between variables.
Linear Regression minimizes the sum of squared errors between the actual data points and the predicted values on the line.
It assumes that the noise in the data is normally distributed with a mean of zero.
Outliers in the data can significantly impact the regression line and its accuracy.
Regularization techniques l...
Use linear algebra to solve for coefficients in two equations.
Set up the two equations with unknown coefficients
Solve the equations simultaneously using methods like substitution or elimination
Example: 2x + 3y = 10 and 4x - y = 5, solve for x and y
posted on 6 Jan 2025
SQL & aptitude question
1 coding question for 45 min
I applied via LinkedIn and was interviewed in Jul 2024. There were 3 interview rounds.
Assignment on credit risk
posted on 7 May 2024
I applied via Job Portal and was interviewed in Nov 2023. There was 1 interview round.
Gradient descent is an optimization algorithm used to minimize a function by iteratively moving in the direction of steepest descent.
Gradient descent is used to find the minimum of a function by taking steps proportional to the negative of the gradient at the current point.
It is commonly used in machine learning to optimize the parameters of a model by minimizing the loss function.
There are different variants of gradie...
LSTM (Long Short-Term Memory) is a type of recurrent neural network designed to handle long-term dependencies.
LSTM has three gates: input gate, forget gate, and output gate.
Input gate controls the flow of information into the cell state.
Forget gate decides what information to discard from the cell state.
Output gate determines the output based on the cell state.
T-test is a statistical test used to determine if there is a significant difference between the means of two groups.
Mean is the average of a set of numbers, median is the middle value when the numbers are ordered, and mode is the most frequently occurring value.
Mean is sensitive to outliers, median is robust to outliers, and mode is useful for categorical data.
T-test is used to compare means of two groups, mean is used...
Random Forest is an ensemble learning method used for classification and regression tasks.
Random Forest is a collection of decision trees that are trained on random subsets of the data.
Each tree in the forest makes a prediction, and the final prediction is the average (regression) or majority vote (classification) of all trees.
Random Forest helps reduce overfitting and improve accuracy compared to a single decision tre...
I applied via Campus Placement and was interviewed before Jul 2023. There was 1 interview round.
Developed a predictive model to forecast customer churn for a telecommunications company.
Identified key features such as customer tenure, monthly charges, and service usage
Collected and cleaned data from customer databases
Built a machine learning model using logistic regression or random forest algorithms
Evaluated model performance using metrics like accuracy, precision, and recall
Provided actionable insights to reduce
Types of errors in statistics include sampling error, measurement error, and non-sampling error.
Sampling error occurs when the sample does not represent the population accurately.
Measurement error is caused by inaccuracies in data collection or measurement instruments.
Non-sampling error includes errors in data processing, analysis, and interpretation.
Examples: Sampling error - selecting a biased sample, Measurement err...
Types of machine learning models include supervised learning, unsupervised learning, and reinforcement learning.
Supervised learning: Models learn from labeled data, making predictions based on past examples (e.g. linear regression, support vector machines)
Unsupervised learning: Models find patterns in unlabeled data, clustering similar data points together (e.g. k-means clustering, PCA)
Reinforcement learning: Models le...
get_dummies() function in pandas library is used to convert categorical variables into dummy/indicator variables.
get_dummies() function creates dummy variables for categorical columns in a DataFrame.
It converts categorical variables into numerical representation for machine learning models.
Example: df = pd.get_dummies(df, columns=['column_name'])
I was asked Python, sql, coding questions
Case study on how would you identify the total number of footfall on a airport
Cross validation is a technique used to assess the performance of a predictive model by splitting the data into training and testing sets multiple times.
Cross validation helps to evaluate how well a model generalizes to new data.
It involves splitting the data into k subsets, training the model on k-1 subsets, and testing it on the remaining subset.
Common types of cross validation include k-fold cross validation and lea...
Python coding question and ML question
posted on 20 Jun 2024
I applied via IIM Jobs and was interviewed before Jun 2023. There was 1 interview round.
Company Secretary
4
salaries
| ₹12 L/yr - ₹15 L/yr |
IDBI Capital
Indostar Home Finance
ART Housing Finance (India)
CENTRUM HOUSING FINANCE