Filter interviews by
I applied via Naukri.com and was interviewed in Jun 2024. There were 3 interview rounds.
SQL query to join two tables
Use JOIN keyword to combine rows from two or more tables based on a related column between them
Specify the columns to be selected from each table
Use ON keyword to specify the join condition
Analyzing datasets and building a Machine Learning model for Associate Data Scientist role.
1. Explore and understand the datasets to identify patterns and relationships.
2. Preprocess the data by handling missing values, encoding categorical variables, and scaling numerical features.
3. Split the data into training and testing sets for model evaluation.
4. Choose a suitable Machine Learning algorithm based on the nature o...
Assumptions of linear regression are important for the model to be valid and reliable.
Linear relationship between independent and dependent variables
Independence of residuals (errors)
Homoscedasticity (constant variance of residuals)
Normality of residuals
No multicollinearity among independent variables
R-Squared measures the proportion of variance explained by the model, while Adjusted R-Squared adjusts for the number of predictors in the model.
R-Squared increases as more predictors are added to the model, even if they are not relevant.
Adjusted R-Squared penalizes for adding irrelevant predictors, making it a more reliable measure of model fit.
R-Squared can never decrease when adding predictors, while Adjusted R-Squa...
Central Limit Theorem states that the sampling distribution of the sample mean approaches a normal distribution as the sample size increases.
The Central Limit Theorem is a fundamental concept in statistics that states that the sampling distribution of the sample mean will be approximately normally distributed, regardless of the shape of the population distribution, as the sample size increases.
It is important because i...
Rank assigns unique ranks to each row based on the order specified, while Dense Rank assigns consecutive ranks without gaps.
Rank may have gaps in ranks if there are ties, while Dense Rank does not have gaps.
Rank function is used to assign a unique rank to each row based on the specified order, while Dense Rank function assigns consecutive ranks.
Example: If three rows have the same value and are ranked 1, 1, and 2 using...
Series is a one-dimensional labeled array while Dataframe is a two-dimensional labeled data structure.
Series can hold data of any type while Dataframe is a collection of Series.
Dataframe is like a table with rows and columns, while Series is like a single column of that table.
Dataframe is more versatile and powerful compared to Series.
Example: Series - a column of employee names. Dataframe - a table with columns for em
Random Forest is an ensemble learning algorithm that creates multiple decision trees and combines their predictions.
Random Forest is a collection of decision trees that are trained on random subsets of the data.
Each tree in the Random Forest independently predicts the outcome, and the final prediction is made by averaging the predictions of all trees.
Random Forest is used for classification and regression tasks, and it...
Stemming reduces words to their root form, while lemmatization reduces words to their dictionary form.
Stemming chops off prefixes or suffixes to get the root form (e.g. 'running' becomes 'run')
Lemmatization uses vocabulary analysis to reduce words to their base form (e.g. 'better' becomes 'good')
Lemmatization is more accurate but slower than stemming
Stemming is faster but may not always result in a valid word
Top trending discussions
Overfitting occurs when a machine learning model learns the training data too well, including noise and outliers, leading to poor generalization on new data.
Overfitting happens when a model is too complex and captures noise in the training data.
It leads to poor performance on unseen data as the model fails to generalize well.
Techniques to prevent overfitting include cross-validation, regularization, and early stopping.
...
Overfitting occurs when a model learns the details and noise in the training data to the extent that it negatively impacts the model's performance on new data.
Overfitting happens when a model is too complex and captures noise in the training data.
It leads to poor generalization and high accuracy on training data but low accuracy on new data.
Techniques to prevent overfitting include cross-validation, regularization, and...
Some of the top questions asked at the GeakMinds Associate Data Scientist interview -
based on 1 interview
Interview experience
based on 3 reviews
Rating in categories
Software Engineer
11
salaries
| ₹3.6 L/yr - ₹6.3 L/yr |
Data Scientist
7
salaries
| ₹3 L/yr - ₹5 L/yr |
Softwaretest Engineer
6
salaries
| ₹2 L/yr - ₹6.5 L/yr |
Associate Software Engineer
6
salaries
| ₹2.7 L/yr - ₹3.9 L/yr |
Lead Data Scientist
5
salaries
| ₹20 L/yr - ₹25 L/yr |
TCS
Infosys
Wipro
HCLTech