Filter interviews by
I applied via campus placement at Raghu Engineering College, Visakhapatnam and was interviewed in Apr 2024. There were 2 interview rounds.
Speech to Speech bot
Implementing CNN code on notepad
Start by defining the CNN architecture with layers like Conv2D, MaxPooling2D, Flatten, and Dense
Compile the model with appropriate loss function and optimizer
Train the model on a dataset using fit() function
Evaluate the model's performance using test data and metrics like accuracy
LLM stands for Latent Language Model, which is a type of machine learning model used for natural language processing tasks.
LLM is a type of language model that learns to predict the next word in a sentence based on the context provided.
It uses latent variables to capture the underlying structure of the language.
LLM can be trained using unsupervised learning techniques such as autoencoders or variational autoencoders.
Ex...
Top trending discussions
I applied via Company Website and was interviewed in Nov 2024. There were 2 interview rounds.
Logical, Verbal, reasoning 90 mins
I applied via Naukri.com and was interviewed in Aug 2024. There were 2 interview rounds.
Evaluation metrics for classification are used to assess the performance of a classification model.
Common evaluation metrics include accuracy, precision, recall, F1 score, and ROC-AUC.
Accuracy measures the proportion of correctly classified instances out of the total instances.
Precision measures the proportion of true positive predictions out of all positive predictions.
Recall measures the proportion of true positive p...
L1 and L2 regression are regularization techniques used in machine learning to prevent overfitting.
L1 regression adds a penalty equivalent to the absolute value of the magnitude of coefficients.
L2 regression adds a penalty equivalent to the square of the magnitude of coefficients.
L1 regularization can lead to sparse models, while L2 regularization tends to shrink coefficients towards zero.
L1 regularization is also know...
Random forest is an ensemble learning algorithm that builds multiple decision trees and combines their predictions.
Random forest creates multiple decision trees using bootstrapping and feature randomization.
Each tree in the random forest is trained on a subset of the data and features.
The final prediction is made by averaging the predictions of all the trees (regression) or taking a majority vote (classification).
I am a dedicated and passionate Machine Learning Engineer with a strong background in computer science and data analysis.
Experienced in developing machine learning models for various applications
Proficient in programming languages such as Python, R, and Java
Skilled in data preprocessing, feature engineering, and model evaluation
Strong understanding of algorithms and statistical concepts
Excellent problem-solving and ana
posted on 16 May 2024
I applied via Recruitment Consulltant and was interviewed in Apr 2024. There were 3 interview rounds.
Genral and technical aptitude test
By creating a structured onboarding process, utilizing technology for efficiency, and leveraging a team of trainers.
Develop a comprehensive onboarding program with clear objectives and timelines.
Utilize technology such as online training modules and virtual onboarding sessions.
Assign a team of trainers to handle different aspects of the onboarding process.
Implement a buddy system where existing employees mentor new hir...
I applied via Referral and was interviewed in Sep 2024. There was 1 interview round.
posted on 19 Sep 2024
I applied via LinkedIn
I am a passionate and experienced Learning & Development Specialist with a strong background in designing and delivering effective training programs.
Over 5 years of experience in creating engaging learning materials
Skilled in conducting needs assessments and developing training plans
Proficient in utilizing various instructional design methodologies
Strong communication and presentation skills
Proven track record of impro...
posted on 24 Jul 2024
We have worked on various projects involving image recognition, natural language processing, and predictive analytics.
Image recognition: Developed a model to classify different types of fruits based on images.
Natural language processing: Created a sentiment analysis tool for customer reviews.
Predictive analytics: Built a model to forecast sales based on historical data.
A module in machine learning is a self-contained unit that performs a specific task or function.
Modules can include algorithms, data preprocessing techniques, evaluation metrics, etc.
Modules can be combined to create a machine learning pipeline.
Examples of modules include decision trees, support vector machines, and k-means clustering.
posted on 23 Mar 2024
Full Stack Developer
4
salaries
| ₹5 L/yr - ₹7.5 L/yr |
Sr. Wordpress Developer
3
salaries
| ₹12.5 L/yr - ₹14 L/yr |
Computer Vision Engineer
3
salaries
| ₹5 L/yr - ₹6 L/yr |
TCS
Infosys
Wipro
HCLTech