Upload Button Icon Add office photos

Filter interviews by

PayCraft Solutions Data Scientist Interview Questions and Answers

Be the first one to contribute and help others!

Interview questions from similar companies

Interview experience
3
Average
Difficulty level
-
Process Duration
-
Result
-
Round 1 - Technical 

(2 Questions)

  • Q1. What is overfitting in machine learning?
  • Ans. 

    Overfitting occurs when a machine learning model learns the training data too well, including noise and outliers, leading to poor generalization on new data.

    • Overfitting happens when a model is too complex and captures noise in the training data.

    • It leads to poor performance on unseen data as the model fails to generalize well.

    • Techniques to prevent overfitting include cross-validation, regularization, and early stopping.

    • ...

  • Answered by AI
  • Q2. Overfitting accurs when a model learns the details.......etc
  • Ans. 

    Overfitting occurs when a model learns the details and noise in the training data to the extent that it negatively impacts the model's performance on new data.

    • Overfitting happens when a model is too complex and captures noise in the training data.

    • It leads to poor generalization and high accuracy on training data but low accuracy on new data.

    • Techniques to prevent overfitting include cross-validation, regularization, and...

  • Answered by AI

Interview Preparation Tips

Interview preparation tips for other job seekers - Research the company before interview.
Interview experience
5
Excellent
Difficulty level
-
Process Duration
-
Result
-
Round 1 - Case Study 

Forecasting problem - Predict daily sku level sales

Round 2 - Technical 

(2 Questions)

  • Q1. What is difference between bias and variance
  • Ans. 

    Bias is error due to overly simplistic assumptions, variance is error due to overly complex models.

    • Bias is the error introduced by approximating a real-world problem, leading to underfitting.

    • Variance is the error introduced by modeling the noise in the training data, leading to overfitting.

    • High bias can cause a model to miss relevant relationships between features and target variable.

    • High variance can cause a model to ...

  • Answered by AI
  • Q2. Parametric vs non parametruc model
  • Ans. 

    Parametric models make strong assumptions about the form of the underlying data distribution, while non-parametric models do not.

    • Parametric models have a fixed number of parameters, while non-parametric models have a flexible number of parameters.

    • Parametric models are simpler and easier to interpret, while non-parametric models are more flexible and can capture complex patterns in data.

    • Examples of parametric models inc...

  • Answered by AI

Skills evaluated in this interview

Interview experience
4
Good
Difficulty level
Moderate
Process Duration
Less than 2 weeks
Result
Selected Selected

I applied via Approached by Company and was interviewed before Mar 2023. There were 3 interview rounds.

Round 1 - Technical 

(1 Question)

  • Q1. Mostly about projects ml, nlp, python code would be asked
Round 2 - Technical 

(1 Question)

  • Q1. It would be focused on technical stuff in detail ml, nlp, deployments etc
Round 3 - HR 

(1 Question)

  • Q1. Organisation fit
Interview experience
3
Average
Difficulty level
-
Process Duration
-
Result
-
Round 1 - Technical 

(2 Questions)

  • Q1. What is overfitting in machine learning?
  • Ans. 

    Overfitting occurs when a machine learning model learns the training data too well, including noise and outliers, leading to poor generalization on new data.

    • Overfitting happens when a model is too complex and captures noise in the training data.

    • It leads to poor performance on unseen data as the model fails to generalize well.

    • Techniques to prevent overfitting include cross-validation, regularization, and early stopping.

    • ...

  • Answered by AI
  • Q2. Overfitting accurs when a model learns the details.......etc
  • Ans. 

    Overfitting occurs when a model learns the details and noise in the training data to the extent that it negatively impacts the model's performance on new data.

    • Overfitting happens when a model is too complex and captures noise in the training data.

    • It leads to poor generalization and high accuracy on training data but low accuracy on new data.

    • Techniques to prevent overfitting include cross-validation, regularization, and...

  • Answered by AI

Interview Preparation Tips

Interview preparation tips for other job seekers - Research the company before interview.
Interview experience
5
Excellent
Difficulty level
-
Process Duration
-
Result
-
Round 1 - Case Study 

Forecasting problem - Predict daily sku level sales

Round 2 - Technical 

(2 Questions)

  • Q1. What is difference between bias and variance
  • Ans. 

    Bias is error due to overly simplistic assumptions, variance is error due to overly complex models.

    • Bias is the error introduced by approximating a real-world problem, leading to underfitting.

    • Variance is the error introduced by modeling the noise in the training data, leading to overfitting.

    • High bias can cause a model to miss relevant relationships between features and target variable.

    • High variance can cause a model to ...

  • Answered by AI
  • Q2. Parametric vs non parametruc model
  • Ans. 

    Parametric models make strong assumptions about the form of the underlying data distribution, while non-parametric models do not.

    • Parametric models have a fixed number of parameters, while non-parametric models have a flexible number of parameters.

    • Parametric models are simpler and easier to interpret, while non-parametric models are more flexible and can capture complex patterns in data.

    • Examples of parametric models inc...

  • Answered by AI

Skills evaluated in this interview

Interview experience
2
Poor
Difficulty level
Moderate
Process Duration
2-4 weeks
Result
No response

I applied via Naukri.com and was interviewed before Mar 2023. There were 3 interview rounds.

Round 1 - Technical 

(1 Question)

  • Q1. Machine Learning
Round 2 - Technical 

(1 Question)

  • Q1. Machine Learning
Round 3 - Case Study 

Approach check for multiple case studies

Interview Preparation Tips

Interview preparation tips for other job seekers - Never received the final response after the 3rd round which was with the CTO. The HR kept saying we are yet to get the feedback.
Interview experience
4
Good
Difficulty level
Moderate
Process Duration
Less than 2 weeks
Result
Selected Selected

I applied via Approached by Company and was interviewed before Mar 2023. There were 3 interview rounds.

Round 1 - Technical 

(1 Question)

  • Q1. Mostly about projects ml, nlp, python code would be asked
Round 2 - Technical 

(1 Question)

  • Q1. It would be focused on technical stuff in detail ml, nlp, deployments etc
Round 3 - HR 

(1 Question)

  • Q1. Organisation fit

Tell us how to improve this page.

Interview Questions from Similar Companies

Paytm Interview Questions
3.3
 • 762 Interviews
PhonePe Interview Questions
4.0
 • 301 Interviews
Razorpay Interview Questions
3.6
 • 148 Interviews
Webdew Interview Questions
4.5
 • 106 Interviews
HyScaler Interview Questions
4.5
 • 90 Interviews
Mobikwik Interview Questions
4.0
 • 45 Interviews
View all
Software Engineer
57 salaries
unlock blur

₹2.4 L/yr - ₹10 L/yr

Software Engineer Level 1
35 salaries
unlock blur

₹4 L/yr - ₹10.1 L/yr

Senior Software Engineer
19 salaries
unlock blur

₹5.2 L/yr - ₹20.9 L/yr

Production Support Engineer
19 salaries
unlock blur

₹3 L/yr - ₹5 L/yr

Software Engineer2
15 salaries
unlock blur

₹6 L/yr - ₹12 L/yr

Explore more salaries
Compare PayCraft Solutions with

Payed

2.8
Compare

Razorpay

3.6
Compare

BillDesk

3.2
Compare

CCAvenue

2.1
Compare
Did you find this page helpful?
Yes No
write
Share an Interview