Upload Button Icon Add office photos
Engaged Employer

i

This company page is being actively managed by bluCognition Team. If you also belong to the team, you can get access from here

bluCognition Verified Tick

Compare button icon Compare button icon Compare
3.8

based on 100 Reviews

Filter interviews by

bluCognition Data Scientist Interview Questions and Answers

Updated 28 Feb 2023

bluCognition Data Scientist Interview Experiences

1 interview found

Interview experience
1
Bad
Difficulty level
-
Process Duration
-
Result
-
Round 1 - Resume Shortlist 
Pro Tip by AmbitionBox:
Keep your resume crisp and to the point. A recruiter looks at your resume for an average of 6 seconds, make sure to leave the best impression.
View all tips
Round 2 - Aptitude Test 

General round of the discussion on the product.

Round 3 - One-on-one 

(2 Questions)

  • Q1. Technical one where they ask generic DS questions
  • Q2. Tell me about you as DS role?
  • Ans. 

    As a Data Scientist, I analyze complex data sets to extract valuable insights and make data-driven decisions.

    • I have expertise in statistical analysis and machine learning algorithms.

    • I use programming languages like Python and R to manipulate and analyze data.

    • I have experience in data visualization techniques to communicate findings effectively.

    • I collaborate with cross-functional teams to identify business problems and ...

  • Answered by AI

Interview Preparation Tips

Interview preparation tips for other job seekers - get to know about you, your role as the Data Science

Interview questions from similar companies

Interview experience
3
Average
Difficulty level
-
Process Duration
-
Result
-
Round 1 - Technical 

(2 Questions)

  • Q1. What is overfitting in machine learning?
  • Ans. 

    Overfitting occurs when a machine learning model learns the training data too well, including noise and outliers, leading to poor generalization on new data.

    • Overfitting happens when a model is too complex and captures noise in the training data.

    • It leads to poor performance on unseen data as the model fails to generalize well.

    • Techniques to prevent overfitting include cross-validation, regularization, and early stopping.

    • ...

  • Answered by AI
  • Q2. Overfitting accurs when a model learns the details.......etc
  • Ans. 

    Overfitting occurs when a model learns the details and noise in the training data to the extent that it negatively impacts the model's performance on new data.

    • Overfitting happens when a model is too complex and captures noise in the training data.

    • It leads to poor generalization and high accuracy on training data but low accuracy on new data.

    • Techniques to prevent overfitting include cross-validation, regularization, and...

  • Answered by AI

Interview Preparation Tips

Interview preparation tips for other job seekers - Research the company before interview.
Interview experience
5
Excellent
Difficulty level
-
Process Duration
-
Result
-
Round 1 - Case Study 

Forecasting problem - Predict daily sku level sales

Round 2 - Technical 

(2 Questions)

  • Q1. What is difference between bias and variance
  • Ans. 

    Bias is error due to overly simplistic assumptions, variance is error due to overly complex models.

    • Bias is the error introduced by approximating a real-world problem, leading to underfitting.

    • Variance is the error introduced by modeling the noise in the training data, leading to overfitting.

    • High bias can cause a model to miss relevant relationships between features and target variable.

    • High variance can cause a model to ...

  • Answered by AI
  • Q2. Parametric vs non parametruc model
  • Ans. 

    Parametric models make strong assumptions about the form of the underlying data distribution, while non-parametric models do not.

    • Parametric models have a fixed number of parameters, while non-parametric models have a flexible number of parameters.

    • Parametric models are simpler and easier to interpret, while non-parametric models are more flexible and can capture complex patterns in data.

    • Examples of parametric models inc...

  • Answered by AI

Skills evaluated in this interview

Interview experience
4
Good
Difficulty level
Moderate
Process Duration
Less than 2 weeks
Result
Selected Selected

I applied via Approached by Company and was interviewed before Mar 2023. There were 3 interview rounds.

Round 1 - Technical 

(1 Question)

  • Q1. Mostly about projects ml, nlp, python code would be asked
Round 2 - Technical 

(1 Question)

  • Q1. It would be focused on technical stuff in detail ml, nlp, deployments etc
Round 3 - HR 

(1 Question)

  • Q1. Organisation fit
Interview experience
3
Average
Difficulty level
-
Process Duration
-
Result
-
Round 1 - Technical 

(2 Questions)

  • Q1. What is overfitting in machine learning?
  • Ans. 

    Overfitting occurs when a machine learning model learns the training data too well, including noise and outliers, leading to poor generalization on new data.

    • Overfitting happens when a model is too complex and captures noise in the training data.

    • It leads to poor performance on unseen data as the model fails to generalize well.

    • Techniques to prevent overfitting include cross-validation, regularization, and early stopping.

    • ...

  • Answered by AI
  • Q2. Overfitting accurs when a model learns the details.......etc
  • Ans. 

    Overfitting occurs when a model learns the details and noise in the training data to the extent that it negatively impacts the model's performance on new data.

    • Overfitting happens when a model is too complex and captures noise in the training data.

    • It leads to poor generalization and high accuracy on training data but low accuracy on new data.

    • Techniques to prevent overfitting include cross-validation, regularization, and...

  • Answered by AI

Interview Preparation Tips

Interview preparation tips for other job seekers - Research the company before interview.
Interview experience
5
Excellent
Difficulty level
-
Process Duration
-
Result
-
Round 1 - Case Study 

Forecasting problem - Predict daily sku level sales

Round 2 - Technical 

(2 Questions)

  • Q1. What is difference between bias and variance
  • Ans. 

    Bias is error due to overly simplistic assumptions, variance is error due to overly complex models.

    • Bias is the error introduced by approximating a real-world problem, leading to underfitting.

    • Variance is the error introduced by modeling the noise in the training data, leading to overfitting.

    • High bias can cause a model to miss relevant relationships between features and target variable.

    • High variance can cause a model to ...

  • Answered by AI
  • Q2. Parametric vs non parametruc model
  • Ans. 

    Parametric models make strong assumptions about the form of the underlying data distribution, while non-parametric models do not.

    • Parametric models have a fixed number of parameters, while non-parametric models have a flexible number of parameters.

    • Parametric models are simpler and easier to interpret, while non-parametric models are more flexible and can capture complex patterns in data.

    • Examples of parametric models inc...

  • Answered by AI

Skills evaluated in this interview

Interview experience
2
Poor
Difficulty level
Moderate
Process Duration
2-4 weeks
Result
No response

I applied via Naukri.com and was interviewed before Mar 2023. There were 3 interview rounds.

Round 1 - Technical 

(1 Question)

  • Q1. Machine Learning
Round 2 - Technical 

(1 Question)

  • Q1. Machine Learning
Round 3 - Case Study 

Approach check for multiple case studies

Interview Preparation Tips

Interview preparation tips for other job seekers - Never received the final response after the 3rd round which was with the CTO. The HR kept saying we are yet to get the feedback.
Interview experience
4
Good
Difficulty level
Moderate
Process Duration
Less than 2 weeks
Result
Selected Selected

I applied via Approached by Company and was interviewed before Mar 2023. There were 3 interview rounds.

Round 1 - Technical 

(1 Question)

  • Q1. Mostly about projects ml, nlp, python code would be asked
Round 2 - Technical 

(1 Question)

  • Q1. It would be focused on technical stuff in detail ml, nlp, deployments etc
Round 3 - HR 

(1 Question)

  • Q1. Organisation fit

bluCognition Interview FAQs

How many rounds are there in bluCognition Data Scientist interview?
bluCognition interview process usually has 3 rounds. The most common rounds in the bluCognition interview process are Resume Shortlist, Aptitude Test and One-on-one Round.
How to prepare for bluCognition Data Scientist interview?
Go through your CV in detail and study all the technologies mentioned in your CV. Prepare at least two technologies or languages in depth if you are appearing for a technical interview at bluCognition . The most common topics and skills that interviewers at bluCognition expect are API, Data Science, Image Processing and Python.

Tell us how to improve this page.

bluCognition Data Scientist Interview Process

based on 1 interview

Interview experience

1
  
Bad
View more
bluCognition Data Scientist Salary
based on 10 salaries
₹5.5 L/yr - ₹11.7 L/yr
49% less than the average Data Scientist Salary in India
View more details

bluCognition Data Scientist Reviews and Ratings

based on 1 review

3.0/5

Rating in categories

1.0

Skill development

2.0

Work-life balance

3.0

Salary

1.0

Job security

3.0

Company culture

3.0

Promotions

1.0

Work satisfaction

Explore 1 Review and Rating
Analyst
48 salaries
unlock blur

₹2 L/yr - ₹7.2 L/yr

Senior Analyst
47 salaries
unlock blur

₹3 L/yr - ₹13.5 L/yr

Data Analyst
21 salaries
unlock blur

₹1.7 L/yr - ₹8 L/yr

Assistant Manager
20 salaries
unlock blur

₹5.5 L/yr - ₹12.5 L/yr

Senior Credit Analyst
15 salaries
unlock blur

₹4.1 L/yr - ₹10 L/yr

Explore more salaries
Compare bluCognition with

TCS

3.7
Compare

Infosys

3.6
Compare

Wipro

3.7
Compare

HCLTech

3.5
Compare
Did you find this page helpful?
Yes No
write
Share an Interview