Physical Design Engineer
80+ Physical Design Engineer Interview Questions and Answers

Asked in Intel

Q. What are the conditions for an RC circuit to work as an integrator/differentiator Can you derive it with this circuit
RC circuit works as integrator/differentiator under certain conditions. Can be derived with circuit analysis.
For an RC circuit to work as an integrator, the time constant (RC) should be large enough compared to the input signal frequency.
For an RC circuit to work as a differentiator, the time constant (RC) should be small enough compared to the input signal frequency.
The output voltage of an RC integrator circuit is proportional to the integral of the input voltage.
The output...read more

Asked in Intel

Q. What are second-order effects in CMOS, and can you explain each one?
Second order effects in CMOS and their explanation
Second order effects are non-linear effects that occur in CMOS devices
Some examples include channel length modulation, body effect, and drain-induced barrier lowering
Channel length modulation is the change in effective channel length due to the variation in drain-source voltage
Body effect is the change in threshold voltage due to the variation in substrate voltage
Drain-induced barrier lowering is the reduction in the potential...read more
Physical Design Engineer Interview Questions and Answers for Freshers

Asked in Intel

Q. What are strong 1 and strong 0 concepts in an inverter?
Strong 1 and strong 0 are the maximum voltage levels that an inverter can output for logic 1 and logic 0 respectively.
Strong 1 is the maximum voltage level that an inverter can output for logic 1.
Strong 0 is the maximum voltage level that an inverter can output for logic 0.
These concepts are important in determining the noise margin of a digital circuit.
The noise margin is the difference between the minimum voltage level that represents a logic 1 and the maximum voltage level...read more

Asked in Intel

Q. Can you draw a basic transistor amplifier and explain its functionality?
A transistor amplifier is a circuit that uses a transistor to amplify the input signal.
A transistor amplifier consists of a transistor, a power supply, and input and output signals.
The transistor acts as a switch, controlling the flow of current through the circuit.
The input signal is applied to the base of the transistor, and the output signal is taken from the collector.
The gain of the amplifier is determined by the ratio of the output current to the input current.
Common ty...read more

Asked in Synapse Design

Q. What is an ICG? How would you use it in the design?
ICG stands for Inter-Chip Global. It is a network that connects multiple chips in a system.
ICG is used to transfer data between different chips in a system
It helps in reducing the number of wires required for communication between chips
ICG can be used in various design aspects such as clock distribution, power management, and data transfer
Example: In a multi-chip system, ICG can be used to transfer clock signals from one chip to another

Asked in DIGICOMM Semiconductor

Q. What is the setup and hold time, and what are different techniques to fix setup and hold time violations?
Setup and hold time are timing constraints in digital circuits. Techniques to fix violations include adjusting clock skew, buffering signals, and optimizing routing.
Setup time is the minimum amount of time a data input must be stable before the clock edge for proper operation.
Hold time is the minimum amount of time a data input must be stable after the clock edge for proper operation.
Techniques to fix setup and hold time violations include adjusting clock skew, buffering sign...read more
Physical Design Engineer Jobs




Asked in Intel

Q. Can you draw a basic RC circuit for a low pass filter and explain it?
Yes, I can draw n basic RC circuits for low pass filter and explain.
An RC circuit consists of a resistor and a capacitor in series or parallel
The cutoff frequency of the low pass filter is determined by the values of R and C
The output voltage decreases as the frequency of the input signal increases
Examples of basic RC circuits include RC low pass filter, RC high pass filter, and RC bandpass filter

Asked in Intel

Q. How will the capacitor charge and discharge in this circuit?
The charging and discharging of capacitor in the circuit depends on the voltage and resistance of the circuit.
The capacitor charges when the voltage across it increases and discharges when the voltage decreases.
The rate of charging and discharging depends on the resistance of the circuit.
The time constant of the circuit determines the rate of charging and discharging.
The formula for time constant is T = R*C, where T is time, R is resistance, and C is capacitance.
Share interview questions and help millions of jobseekers 🌟

Asked in Intel

Q. What do you know about CMOS latch-up? Explain with the help of circuitry.
CMOS latch-up is a phenomenon where a parasitic thyristor is formed in a CMOS circuit, causing it to malfunction.
CMOS latch-up occurs when a parasitic thyristor is formed between the power supply and ground in a CMOS circuit.
This can happen when the voltage at the input or output pins exceeds the power supply voltage.
To prevent latch-up, designers use guard rings, substrate contacts, and other techniques to prevent the formation of parasitic thyristors.
Latch-up can be visuali...read more

Asked in Intel

Q. What is load line, What is difference between dc load line to that of ac load line
Load line is a graphical representation of the relationship between voltage and current in a circuit.
DC load line represents the steady-state behavior of a circuit while AC load line represents the dynamic behavior of a circuit.
DC load line is a straight line while AC load line is a curved line.
DC load line is used to determine the operating point of a circuit while AC load line is used to analyze the small-signal behavior of a circuit.
Load line analysis is important in deter...read more

Asked in Intel

Q. Can you explain the five levels of operation of an inverter?
An inverter has 5 levels of working: input, pre-driver, driver, output, and load.
Input stage receives the input signal and converts it to a digital signal.
Pre-driver stage amplifies the digital signal and sends it to the driver stage.
Driver stage amplifies the signal further and sends it to the output stage.
Output stage converts the amplified signal back to analog form.
Load stage receives the analog signal and drives the load.

Asked in Intel

Q. How does the current equation change when second-order effects are taken into account?
The current equation becomes more complex and includes additional terms when second order effects are considered.
Second order effects refer to non-linearities in the system that affect the current equation.
These effects can include things like parasitic capacitance, inductance, and resistance.
When second order effects are taken into account, the current equation may include additional terms such as higher order derivatives.
These additional terms make the equation more complex...read more

Asked in Intel

Q. How would you manage an event inside Intel?
I effectively manage events at Intel by prioritizing tasks, collaborating with teams, and ensuring timely communication.
Prioritize tasks based on urgency and impact, e.g., addressing critical design issues first.
Collaborate with cross-functional teams to gather insights and feedback, ensuring all perspectives are considered.
Utilize project management tools to track progress and deadlines, e.g., using JIRA for task assignments.
Conduct regular meetings to update stakeholders an...read more

Asked in Intel

Q. What is Q point, how does voltage divider bias fix Q point
Q point is the operating point of a transistor. Voltage divider bias fixes Q point by setting the base voltage to a desired level.
Q point is the DC bias point of a transistor.
It is the point where the transistor operates in the active region.
Voltage divider bias sets the base voltage to a desired level, which in turn sets the Q point.
This ensures that the transistor operates in the desired region and provides the required gain.
If the Q point is not set properly, the transisto...read more

Asked in Intel

Q. What is the difference between small signal analysis and large signal analysis?
Small signal analysis is linear and deals with small variations around an operating point, while large signal analysis is nonlinear and deals with large variations.
Small signal analysis assumes that the circuit is linear and that the input signal is small enough to not affect the operating point of the circuit.
Large signal analysis deals with nonlinear circuits and assumes that the input signal is large enough to affect the operating point of the circuit.
Small signal analysis...read more

Asked in Intel

Q. What you know about layout designing, which tool you have worked with
Layout designing involves creating a physical representation of a circuit using CAD tools.
Layout designing is a crucial step in the physical design process of integrated circuits.
It involves placing and routing the components of a circuit to meet design specifications.
CAD tools commonly used for layout designing include Cadence Virtuoso, Synopsys IC Compiler, and Mentor Graphics Calibre.
Layout designers must consider factors such as power consumption, signal integrity, and ma...read more

Asked in SmartSoC Solutions

Q. How can Calibre be used to identify missing tie cell issues?
To catch a missing tie cell issue using calibre, run DRC check with appropriate rule deck.
Create a rule deck with tie cell rules
Run DRC check using the rule deck
Check the DRC report for any missing tie cell violations
Fix the violations and re-run DRC check
Repeat until all violations are fixed

Asked in Intel

Q. Why is a voltage divider bias circuit preferred over other biasing circuits?
Voltage divider bias circuit is preferred due to its stability and low sensitivity to temperature variations.
Provides stable bias voltage
Low sensitivity to temperature variations
Simple and easy to implement
Suitable for low power applications
Reduces noise and distortion
Examples: BJT amplifier circuits, op-amp circuits

Asked in Intel

Q. Can you draw the waveform for charging and discharging current?
Yes, I can draw the waveform for charging and discharging current.
The waveform for charging current is a rising slope from zero to the maximum current value, followed by a plateau at the maximum value until the battery is fully charged.
The waveform for discharging current is a falling slope from the maximum current value to zero, followed by a plateau at zero until the battery is fully discharged.
The charging and discharging waveforms can be represented graphically using a vo...read more

Asked in Intel

Q. Can you draw a CMOS inverter and explain it?
A CMOS inverter is a digital logic gate that converts a digital input signal to its complement.
It consists of a PMOS transistor and an NMOS transistor connected in series.
The input signal is connected to the gates of both transistors.
The output is taken from the drain of the PMOS transistor and the drain of the NMOS transistor.
When the input is high, the PMOS transistor is off and the NMOS transistor is on, resulting in a low output.
When the input is low, the PMOS transistor ...read more

Asked in Synapse Design

Q. How will you fix setup and hold time when both are violating at the same time?
Fixing setup and hold time violations simultaneously requires adjusting clock timing and/or data path delays.
Identify the critical path causing the violations
Adjust the clock timing to meet setup and hold requirements
Adjust the data path delays to meet setup and hold requirements
Use tools like static timing analysis and delay calculation to determine necessary adjustments
Iteratively adjust timing and delays until violations are resolved

Asked in DIGICOMM Semiconductor

Q. What are the different techniques to minimize congestion?
Techniques to minimize congestion include buffer insertion, wire spreading, and layer assignment.
Buffer insertion: Adding buffers to critical paths to improve timing and reduce congestion.
Wire spreading: Distributing wires evenly to reduce congestion in specific areas.
Layer assignment: Properly assigning different signal layers to reduce congestion on a single layer.

Asked in DIGICOMM Semiconductor

Q. What is useful skew, negative skew, and positive skew?
Useful skew, negative skew, and positive skew are terms used in physical design to describe timing constraints.
Useful skew refers to intentional delay added to certain paths to meet timing requirements.
Negative skew occurs when data arrives later than expected, leading to potential timing violations.
Positive skew occurs when data arrives earlier than expected, potentially causing setup time violations.
Skew can be adjusted by inserting buffers or adjusting routing paths.
Exampl...read more

Asked in Intel

Q. What is the virtual ground concept in an op-amp?
Virtual ground is a concept where the non-inverting input of an op-amp is grounded to create a reference point for the inverting input.
Virtual ground is created by connecting the non-inverting input of an op-amp to ground.
This creates a reference point for the inverting input, which can be used to amplify the difference between the two inputs.
Virtual ground is commonly used in amplifier circuits and filters.
Examples of circuits that use virtual ground include inverting and no...read more

Asked in DIGICOMM Semiconductor

Q. How do you determine if a floor plan is good or bad in a design?
A good floor plan should optimize area, minimize congestion, and ensure signal integrity.
Optimize area utilization
Minimize congestion and routing complexity
Ensure signal integrity and minimize noise
Consider power and thermal constraints
Ensure ease of design changes and modifications

Asked in Intel

Q. What do you know about the stabilization concept in an amplifier?
Stabilization concept in an amplifier refers to the techniques used to prevent oscillations and ensure stable operation.
Stabilization is achieved by adding feedback components to the amplifier circuit
The feedback components can include resistors, capacitors, and inductors
Negative feedback is commonly used to stabilize amplifiers
Positive feedback can cause instability and oscillations
Stabilization techniques vary depending on the type of amplifier and its application
Examples o...read more

Asked in SoCtronics Technologies

Q. Why are NAND and NOR gates called universal gates? Explain.
NAND and NOR gates are called universal gates because they can be used to create any other type of logic gate.
NAND gate can be used to create AND, OR, and NOT gates by combining multiple NAND gates
NOR gate can be used to create AND, OR, and NOT gates by combining multiple NOR gates
Using De Morgan's theorem, NAND and NOR gates can be used interchangeably to implement any logic function

Asked in Intel

Q. How can we avoid latch-up in a CMOS circuit?
Latch up in CMOS circuits can be avoided by implementing proper layout techniques and using guard rings.
Implement proper layout techniques
Use guard rings
Avoid asymmetric layout
Minimize substrate resistance
Use low-resistance substrate material
Avoid high substrate doping levels
Use ESD protection devices
Avoid high voltage gradients
Use proper power supply sequencing

Asked in Intel

Q. How would you rate your programming skills on a scale of 1 to 10?
I rate myself 8 out of 10 in programming.
I have experience in programming languages such as C++, Python, and Verilog.
I have developed scripts to automate tasks and improve efficiency.
I am constantly learning and improving my programming skills.
I have successfully completed several programming projects.
I am comfortable working with complex algorithms and data structures.

Asked in Intel

Q. Draw a cross-sectional view of an NMOS transistor and explain its electron flow at the level of operation.
An NMOS cross-sectional view and electron flow level working explanation.
NMOS stands for n-channel metal-oxide-semiconductor.
It is a type of MOSFET (metal-oxide-semiconductor field-effect transistor).
NMOS has a source, drain, and gate terminal.
When a voltage is applied to the gate, it creates an electric field that attracts electrons from the source to the drain.
The flow of electrons from source to drain is controlled by the voltage applied to the gate.
The cross-sectional vie...read more
Interview Questions of Similar Designations
Interview Experiences of Popular Companies








Reviews
Interviews
Salaries
Users

