Filter interviews by
I applied via Referral and was interviewed in Jun 2024. There was 1 interview round.
I applied via Campus Placement and was interviewed in Nov 2024. There were 3 interview rounds.
There were verbal, non verbal, reasoning , English and maths questions
I worked on a project analyzing customer behavior using machine learning algorithms.
Used Python for data preprocessing and analysis
Implemented machine learning models such as decision trees and logistic regression
Performed feature engineering to improve model performance
Proficient in Python, R, and SQL with experience in data manipulation, visualization, and machine learning algorithms.
Proficient in Python for data analysis and machine learning tasks
Experience with R for statistical analysis and visualization
Knowledge of SQL for querying databases and extracting data
Familiarity with libraries such as Pandas, NumPy, Matplotlib, and Scikit-learn
I currently stay in an apartment in downtown area.
I stay in an apartment in downtown area
My current residence is in a city
I live close to my workplace
I am a data science enthusiast with a strong background in statistics and machine learning.
Background in statistics and machine learning
Passionate about data science
Experience with data analysis tools like Python and R
I applied via Campus Placement
Basic DSA questions will be asked Leetcode Easy to medium
BERT is faster than LSTM due to its transformer architecture and parallel processing capabilities.
BERT utilizes transformer architecture which allows for parallel processing of words in a sentence, making it faster than LSTM which processes words sequentially.
BERT has been shown to outperform LSTM in various natural language processing tasks due to its ability to capture long-range dependencies more effectively.
For exa...
Multinomial Naive Bayes is a classification algorithm based on Bayes' theorem with the assumption of independence between features.
It is commonly used in text classification tasks, such as spam detection or sentiment analysis.
It is suitable for features that represent counts or frequencies, like word counts in text data.
It calculates the probability of each class given the input features and selects the class with the
I applied via campus placement at Chennai Mathematical Institute, Chennai and was interviewed in Dec 2023. There was 1 interview round.
Large Language Models are advanced AI models that can generate human-like text based on input data.
Large Language Models use deep learning techniques to understand and generate text.
Examples include GPT-3 (Generative Pre-trained Transformer 3) and BERT (Bidirectional Encoder Representations from Transformers).
They are trained on vast amounts of text data to improve their language generation capabilities.
RAGs stands for Red, Amber, Green. It is a project management tool used to visually indicate the status of tasks or projects.
RAGs is commonly used in project management to quickly communicate the status of tasks or projects.
Red typically indicates tasks or projects that are behind schedule or at risk.
Amber signifies tasks or projects that are on track but may require attention.
Green represents tasks or projects that ar...
There is no one-size-fits-all answer as the best clustering algorithm depends on the specific dataset and goals.
The best clustering algorithm depends on the dataset characteristics such as size, dimensionality, and noise level.
K-means is popular for its simplicity and efficiency, but may not perform well on non-linear data.
DBSCAN is good for clusters of varying shapes and sizes, but may struggle with high-dimensional d...
I applied via Campus Placement and was interviewed in Jun 2024. There were 2 interview rounds.
Some basic aptitude questions were asked , but had to be solved in 20 minutes
Medium level 2 leet code questions were asked and i cleared both
I applied via Campus Placement and was interviewed before Dec 2023. There were 2 interview rounds.
The first technical round will cover how computer vision works, including the advantages and disadvantages of regression and random forest. It will also include discussions on when to use precision and recall, methods to reduce false positives, and criteria for selecting different models. Additionally, disadvantages of PCA will be addressed, along with project-related questions. The second round will focus on standard aptitude tests, while the third round will involve a casual conversation with the Executive Vice President.
Normal aptitude questions
I applied via Recruitment Consulltant and was interviewed in Feb 2024. There was 1 interview round.
L1 and L2 regularization are techniques used in machine learning to prevent overfitting by adding penalty terms to the cost function.
L1 regularization adds the absolute values of the coefficients as penalty term to the cost function.
L2 regularization adds the squared values of the coefficients as penalty term to the cost function.
L1 regularization can lead to sparse models by forcing some coefficients to be exactly zer...
I applied via Job Portal and was interviewed before Feb 2023. There was 1 interview round.
Hyperparameters in random forest are parameters that are set before the learning process begins.
Hyperparameters control the behavior of the random forest algorithm.
They are set by the data scientist and are not learned from the data.
Examples of hyperparameters in random forest include the number of trees, the maximum depth of trees, and the number of features considered at each split.
A QnA system with LLM is a system that uses the Language Model for Information Retrieval and Question Answering.
Preprocess the input question and convert it into a format suitable for the LLM model.
Fine-tune the LLM model on a dataset of question-answer pairs.
Use the fine-tuned model to generate answers for new questions.
Evaluate the performance of the QnA system using metrics like precision, recall, and F1 score.
Itera...
Unit testing is a process of testing individual units of code to ensure they function correctly.
Write test cases for each unit of code
Test inputs, outputs, and edge cases
Use testing frameworks like JUnit or pytest
Automate tests to run regularly
Ensure tests are independent, isolated, and repeatable
Software Engineer
4
salaries
| ₹13 L/yr - ₹19 L/yr |
Product Designer
3
salaries
| ₹8 L/yr - ₹10.5 L/yr |
Moonfrog Labs
Nazara Technologies
Octro
99games Online