Ninja has recently joined a dance studio as a coach. In the studio, there are N boys and M girls. He can make K potential pairs out of them. He needs to find the maximum number of pairs he can make out of them. Being busy in choreography, he needs your help in finding out the maximum pairs.
Note:
There can be more than one possible set of pairs. In that case, you can return any.
Input Format:
The first line contains an integer 'T' which denotes the number of test cases or queries to be run.
The first line of each test case contains three space-separated integers ‘N’, ‘M’, and ‘K’ denoting the number of boys and girls and potential pairs out of boys and girls.
The next K lines of each test case contain two space-separated integers ‘a’ and ‘b’ denoting the index of boy and index of girl respectively.
Output Format:
For each case, If you return a set of maximum possible pairs then the output will be 1 else it will be 0.
The output of each test case will be printed in a separate line.
Note:
You do not need to input or print anything, and it has already been taken care of. Just implement the given function.
Constraints:
1 <= T <= 5
1 <= N <= 100
1 <= M <= 100
1 <= K <= 100
1 <= a <= N
1 <= b <= M
Timit Limit: 1 sec
If we observe the given problem, we can model it in a graph, specifically a bipartite graph - G (X, Y), where ‘X’ is a vertex set of boys and ‘Y’ is vertex set of girls, and there an edge between a girl and boy if they can dance together. Now we just need to find a set with a maximum number of edges such that no two edges in the set have a common vertex. Here, we will use the concept of Maximum Bipartite Matching and the algorithm Hopcroft-Karp Algorithm. Hopcroft-Karp algorithms say that “A matching M is not maximum if there exists an augmenting path. . An augmenting path in a bipartite graph, with respect to some matching, is an alternating path whose initial and final vertices are unsaturated, i.e., they do not belong in the matching. Here, we will find out the augmenting paths. Whenever we get an augmenting path, we will remove it from our maximal matching ‘M’ and add nonmatching edges to ‘M’, and finally return ‘M’.
Algorithm:
- Initialize Maximum Matching M as null.
- Run a loop until there is no augmenting path in Graph.
- Use BFS to build an alternating level graph, rooted at unmatched vertices in the ‘boy’ set
- Augment current matching M with a maximal set of vertex disjoint shortest-length paths using DFS.
- Return M
O(N + M + K) where K is the potential pairs and N and M are the number of boys and girls respectively.
The Hopcroft-Karp algorithm takes O(N + M + K) space in the worst case for the BFS or DFS algorithm.
O(K * sqrt(N + M)) where K is the potential pairs and N and M are the number of boys and girls respectively.
Each iteration of the Hopcroft-Karp algorithm executes the breadth-first search and depth-first search once. This takes O(K) time. Since each iteration of the algorithm finds the maximal set of shortest augmenting paths by eliminating a path from a root to an unmatched edge, there are at most O(sqrt(N + M)) iterations needed in the worst case.
Java (SE 1.8)
import java.util.*;
/*
Time Complexity: O(K * sqrt(N + M))
Space Complexity: O(N + M + K)
Where K is the potential pairs and N and M are the number of boys and girls respectively.
*/
public class Solution
{
// Array to store the results.
public static ArrayList> result = new ArrayList>();
// Graph to map the boy pair with girl.
private static ArrayList[] graph;
// Utility Arrays for bfs and dfs.
private static int[] pairU, pair, distanceOfU, qq;
// Bfs function to find agumented path
private static boolean bfs(int n)
{
int head = 0;
int cnt = 0;
distanceOfU[0] = n;
for(int u = 1; u <= n; u++)
{
if (pair[u] == 0)
{
distanceOfU[u] = 0;
qq[head + cnt++] = u;
}
else
{
distanceOfU[u] = n;
}
}
while (cnt > 0)
{
int u = qq[head++];
cnt--;
int d = distanceOfU[u] + 1;
ArrayList adj = graph[u];
for (int v : adj)
{
int w = pairU[v];
if (distanceOfU[w] == n)
{
distanceOfU[w] = d;
if (w == 0)
{
return true;
}
qq[head + cnt++] = w;
}
}
}
return false;
}
// Augment current matching M with a maximal set of vertex disjoint shortest-length paths using DFS
private static boolean dfs(int n, int u)
{
if (u == 0)
{
return true;
}
int d = distanceOfU[u] + 1;
ArrayList adj = graph[u];
for(int v : adj)
{
int w = pairU[v];
if(distanceOfU[w] == d && dfs(n, w))
{
pair[u] = v;
pairU[v] = u;
return true;
}
}
distanceOfU[u] = n;
return false;
}
private static void hopcroftKarp(int n, int m)
{
pair = new int[n + 1];
pairU = new int[m + 1];
distanceOfU = new int[n + 1];
qq = new int[n];
int c = 0;
// Use BFS to build an alternating level graph, rooted at unmatched vertices in the boy set
while (bfs(n))
{
for (int u = 1; u <= n; u++)
{
if (pair[u] == 0 && dfs(n, u))
{
c++;
}
}
}
}
public static ArrayList> danceTogether(int edges[][], int n, int m, int k)
{
graph = new ArrayList[n+1];
for (int i = 1; i <= n; i++)
{
graph[i] = new ArrayList();
}
int i = 0;
// Create Graph
while (k-- > 0)
{
int u = edges[i][0];
int v = edges[i][1];
graph[u].add(v);
i++;
}
// Hopcroft_karp algorithm
hopcroftKarp(n, m);
for (i = 1; i <= n; i++)
{
if (pair[i] != 0)
{
ArrayList temp = new ArrayList();
temp.add(i);
temp.add(pair[i]);
result.add(temp);
}
}
return result;
}
}
Python (3.5)
'''
Time Complexity: O(K * sqrt(N + M))
Space Complexity: O(N + M + K)
Where K is the potential pairs and N and M are the number of boys and girls respectively.
'''
# Array to store the results.
result = []
# Graph to map the boy pair with girl.
graph = []
# Utility Arrays for bfs and dfs.
pairU = []
pair = []
distanceOfU = []
qq = []
# Bfs function to find agumented path
def bfs(n):
head = 0
cnt = 0
distanceOfU[0] = n
for u in range(1, n + 1):
if (pair[u] == 0):
distanceOfU[u] = 0
qq[head + cnt] = u
cnt += 1
else:
distanceOfU[u] = n
while (cnt > 0):
u = qq[head]
head += 1
cnt -= 1
d = distanceOfU[u] + 1
adj = graph[u]
for v in adj:
w = pairU[v]
if (distanceOfU[w] == n):
distanceOfU[w] = d
if (w == 0):
return True
qq[head + cnt] = w
cnt += 1
return False
# Augment current matching M with a maximal set of vertex disjoint shortest-length paths using DFS
def dfs(n, u):
if (u == 0):
return True
d = distanceOfU[u] + 1
adj = graph[u]
for v in adj:
w = pairU[v]
if(distanceOfU[w] == d and dfs(n, w)):
pair[u] = v
pairU[v] = u
return True
distanceOfU[u] = n
return False
def hopcroftKarp(n, m):
for i in range(n + 1):
pair.append(0)
distanceOfU.append(0)
qq.append(0)
for i in range(m + 1):
pairU.append(0)
c = 0
# Use BFS to build an alternating level graph, rooted at unmatched vertices in the boy set
while (bfs(n)):
for u in range(1, n + 1):
if (pair[u] == 0 and dfs(n, u)):
c += 1
# Function to clear all global variables.
def init():
result.clear()
graph.clear()
pair.clear()
pairU.clear()
distanceOfU.clear()
qq.clear()
def danceTogether(edges, n, m, k):
init()
for i in range(n + 1):
graph.append([])
i = 0
# Create Graph
while (k > 0):
u = edges[i][0]
v = edges[i][1]
graph[u].append(v)
i += 1
k -= 1
# Hopcroft_karp algorithm
hopcroftKarp(n, m)
for i in range(1, n + 1):
if (pair[i] != 0):
temp = []
temp.append(i)
temp.append(pair[i])
result.append(temp)
return result
C++ (g++ 5.4)
/*
Time Complexity: O(K * sqrt(N + M))
Space Complexity: O(N + M + K)
Where K is the potential pairs and N and M are the number of boys and girls respectively.
*/
// Array to store the results.
vector> result;
// Graph to map the boy pair with girl.
vector> graph;
// Utility Arrays for bfs and dfs.
vector pairU;
vector pairs;
vector distanceOfU;
vector qq;
// Bfs function to find agumented path
bool bfs(int n)
{
int head = 0;
int cnt = 0;
distanceOfU[0] = n;
for(int u = 1; u < n + 1; u++)
{
if (pairs[u] == 0)
{
distanceOfU[u] = 0;
qq[head + cnt] = u;
cnt += 1;
}
else
{
distanceOfU[u] = n;
}
}
while (cnt > 0)
{
int u = qq[head];
head += 1;
cnt -= 1;
int d = distanceOfU[u] + 1;
vector adj = graph[u];
for(int i = 0; i < adj.size(); i++)
{
int v = adj[i];
int w = pairU[v];
if (distanceOfU[w] == n)
{
distanceOfU[w] = d;
if (w == 0)
{
return true;
}
qq[head + cnt] = w;
cnt += 1;
}
}
}
return false;
}
// Augment current matching M with a maximal set of vertex disjoint shortest-length paths using DFS
bool dfs(int n, int u)
{
if (u == 0)
{
return true;
}
int d = distanceOfU[u] + 1;
vector adj = graph[u];
for(int i = 0; i < adj.size(); i++)
{
int v = adj[i];
int w = pairU[v];
if(distanceOfU[w] == d and dfs(n, w))
{
pairs[u] = v;
pairU[v] = u;
return true;
}
}
distanceOfU[u] = n;
return false;
}
void hopcroftKarp(int n, int m)
{
for(int i = 0; i < n + 1; i++)
{
pairs.push_back(0);
distanceOfU.push_back(0);
qq.push_back(0);
}
for(int i = 0; i < m + 1; i++)
pairU.push_back(0);
int c = 0;
// Use BFS to build an alternating level graph, rooted at unmatched vertices in the boy set
while (bfs(n))
{
for(int u = 1; u < n + 1; u++)
{
if (pairs[u] == 0 and dfs(n, u))
{
c += 1;
}
}
}
}
// Function to clear all global variables.
void init()
{
result.clear();
graph.clear();
pairs.clear();
pairU.clear();
distanceOfU.clear();
qq.clear();
}
vector> danceTogether(vector> edges, int n, int m, int k)
{
init();
for(int i = 0; i < n + 1; i++)
{
vector temp;
graph.push_back(temp);
}
int i = 0;
// Create Graph
while (k > 0)
{
int u = edges[i][0];
int v = edges[i][1];
graph[u].push_back(v);
i += 1;
k -= 1;
}
// Hopcroft_karp algorithm
hopcroftKarp(n, m);
for(i = 1; i < n + 1; i++)
{
if (pairs[i] != 0)
{
vector temp;
temp.push_back(i);
temp.push_back(pairs[i]);
result.push_back(temp);
}
}
return result;
}
Top Tower Research Capital LLC Software Engineer interview questions & answers
Popular interview questions of Software Engineer
Reviews
Interviews
Salaries
Users/Month