Shortest Path in a Binary Matrix Problem Statement

Given a binary matrix of size N * M where each element is either 0 or 1, find the shortest path from a source cell to a destination cell, consisting only of 1s. If no such path exists, return -1.

Note:
  • The matrix is 0-indexed.
  • You can move in 4 directions (up, down, left, right) from any cell.
  • The path length is the number of 1s on the path.
  • The source cell is always initialized as 1.

Example:

Input:
1 0 1
1 1 1
1 1 1
SOURCEX = 0, SOURCEY = 0, DESTX = 0, DESTY = 2
Output:
5
Explanation:

Several valid paths exist, such as:

X 0 X
X X X
1 1 1

Another valid path:

X 0 X
X 1 X
X X X

The shortest path from the source cell (0,0) to destination cell (0,2) consisting of 1s is of length 5.

Constraints:

  • 1 ≤ N ≤ 500
  • 1 ≤ M ≤ 500
  • MAT[i] = {0, 1}
  • 0 ≤ SOURCEX ≤ N - 1
  • 0 ≤ SOURCEY ≤ M - 1
  • 0 ≤ DESTX ≤ N - 1
  • 0 ≤ DESTY ≤ M - 1
  • MAT[SOURCEX][SOURCEY] = 1
  • Time Limit: 1 sec

Input:

The first line contains two integers 'N' and 'M', denoting the matrix dimensions.
Next 'N' lines contain 'M' space-separated integers, representing the matrix.
Following them, a line specifies 'SOURCEX' and 'SOURCEY'.
The final line specifies 'DESTX' and 'DESTY'.

Output:

A single integer representing the length of the shortest valid path from source to destination.
Note:
No need to print anything. Implement the function to solve the problem.
Be the first one to answer
Add answer anonymously...
SPRINKLR Production Analyst Interview Questions
Stay ahead in your career. Get AmbitionBox app
qr-code
Helping over 1 Crore job seekers every month in choosing their right fit company
65 L+

Reviews

4 L+

Interviews

4 Cr+

Salaries

1 Cr+

Users/Month

Contribute to help millions

Made with ❤️ in India. Trademarks belong to their respective owners. All rights reserved © 2024 Info Edge (India) Ltd.

Follow us
  • Youtube
  • Instagram
  • LinkedIn
  • Facebook
  • Twitter