Filter interviews by
Top trending discussions
Logistic regression is a statistical model used to predict the probability of a binary outcome based on one or more predictor variables.
Logistic regression is used when the dependent variable is binary (0/1, True/False, Yes/No, etc.)
It estimates the probability that a given input belongs to a particular category.
The model calculates the odds of the event happening.
It uses a logistic function to map the input values to ...
Random forest is an ensemble learning method that builds multiple decision trees and merges them to improve accuracy and prevent overfitting.
Random forest is a type of ensemble learning method.
It builds multiple decision trees during training.
Each tree is built using a subset of the training data and a random subset of features.
The final prediction is made by averaging the predictions of all the individual trees.
Random...
Decision trees are a popular machine learning algorithm used for classification and regression tasks.
Decision trees are a flowchart-like structure where each internal node represents a feature or attribute, each branch represents a decision rule, and each leaf node represents the outcome.
They are easy to interpret and visualize, making them popular for exploratory data analysis.
Decision trees can handle both numerical ...
In the next 5 years, I see myself growing into a senior data scientist role, leading projects and mentoring junior team members.
Continuing to enhance my skills in data analysis, machine learning, and programming languages such as Python and R
Taking on more responsibilities in project management and client interactions
Working towards becoming a subject matter expert in a specific industry or domain
Mentoring and guiding ...
I was a student pursuing my undergraduate degree in Computer Science.
5 years back, I was studying Computer Science in college.
Now, I have completed my degree and gained experience in data science through internships and projects.
I have developed strong analytical and programming skills over the past 5 years.
I have also learned new technologies and tools in the field of data science.
I have a better understanding of real
Business Related case study, signed NDA
Approach involves data preprocessing, model training, evaluation, and interpretation.
Perform data preprocessing such as handling missing values, encoding categorical variables, and scaling features.
Split the data into training and testing sets.
Train the logistic regression model on the training data.
Evaluate the model using metrics like accuracy, precision, recall, and F1 score.
Interpret the model coefficients to under...
I would seek opportunities to apply my skills in related fields within the company.
Explore other departments or teams within the company that may have projects related to my field of interest
Offer to collaborate with colleagues in different departments to bring a new perspective to their projects
Seek out professional development opportunities to expand my skills and knowledge in related areas
I applied via campus placement at Institute of Technology, Banaras Hindu University and was interviewed in Sep 2024. There was 1 interview round.
Decision tree is a tree-like model of decisions and their possible consequences, while random forest is an ensemble learning method that builds multiple decision trees and merges them together.
Decision tree is a flowchart-like structure where each internal node represents a decision based on an attribute, each branch represents the outcome of the decision, and each leaf node represents a class label.
Random forest is a ...
I applied via Recruitment Consulltant and was interviewed in Jul 2024. There were 3 interview rounds.
I applied via Company Website and was interviewed in Dec 2024. There was 1 interview round.
Easy topics arrays, sequence sum.
Basic DSA questions will be asked Leetcode Easy to medium
BERT is faster than LSTM due to its transformer architecture and parallel processing capabilities.
BERT utilizes transformer architecture which allows for parallel processing of words in a sentence, making it faster than LSTM which processes words sequentially.
BERT has been shown to outperform LSTM in various natural language processing tasks due to its ability to capture long-range dependencies more effectively.
For exa...
Multinomial Naive Bayes is a classification algorithm based on Bayes' theorem with the assumption of independence between features.
It is commonly used in text classification tasks, such as spam detection or sentiment analysis.
It is suitable for features that represent counts or frequencies, like word counts in text data.
It calculates the probability of each class given the input features and selects the class with the
based on 1 interview
Interview experience
Research Analyst
8
salaries
| ₹3 L/yr - ₹5 L/yr |
Business Analyst
7
salaries
| ₹3.8 L/yr - ₹8 L/yr |
Market Research Analyst
5
salaries
| ₹4.2 L/yr - ₹7.2 L/yr |
Business Development Executive
5
salaries
| ₹3 L/yr - ₹4.2 L/yr |
Analyst
4
salaries
| ₹4 L/yr - ₹8 L/yr |
Amazon
Flipkart
Amazon Development Centre India
Udaan