i
Go-Jek
Filter interviews by
I applied via Recruitment Consulltant and was interviewed before Apr 2022. There were 4 interview rounds.
It had done sql tests
Use string manipulation to efficiently extract numbers before the decimal point from a list of decimal numbers.
Split each decimal number by the decimal point and extract the number before it
Use regular expressions to match and extract numbers before the decimal point
Iterate through the list and extract numbers using string manipulation functions
I applied via Walk-in and was interviewed in Mar 2020. There was 1 interview round.
R square is a statistical measure that represents the proportion of the variance in the dependent variable explained by the independent variables.
R square is a value between 0 and 1, where 0 indicates that the independent variables do not explain any of the variance in the dependent variable, and 1 indicates that they explain all of it.
It is used to evaluate the goodness of fit of a regression model.
Adjusted R square t...
Variable reducing techniques are methods used to identify and select the most relevant variables in a dataset.
Variable reducing techniques help in reducing the number of variables in a dataset.
These techniques aim to identify the most important variables that contribute significantly to the outcome.
Some common variable reducing techniques include feature selection, dimensionality reduction, and correlation analysis.
Fea...
The Wald test is used in logistic regression to check the significance of the variable.
The Wald test calculates the ratio of the estimated coefficient to its standard error.
It follows a chi-square distribution with one degree of freedom.
A small p-value indicates that the variable is significant.
For example, in Python, the statsmodels library provides the Wald test in the summary of a logistic regression model.
Multicollinearity in logistic regression can be checked using correlation matrix and variance inflation factor (VIF).
Calculate the correlation matrix of the independent variables and check for high correlation coefficients.
Calculate the VIF for each independent variable and check for values greater than 5 or 10.
Consider removing one of the highly correlated variables or variables with high VIF to address multicollinear...
Bagging and boosting are ensemble methods used in machine learning to improve model performance.
Bagging involves training multiple models on different subsets of the training data and then combining their predictions through averaging or voting.
Boosting involves iteratively training models on the same dataset, with each subsequent model focusing on the samples that were misclassified by the previous model.
Bagging reduc...
Logistic regression is a statistical method used to analyze and model the relationship between a binary dependent variable and one or more independent variables.
It is a type of regression analysis used for predicting the outcome of a categorical dependent variable based on one or more predictor variables.
It uses a logistic function to model the probability of the dependent variable taking a particular value.
It is commo...
Gini coefficient measures the inequality among values of a frequency distribution.
Gini coefficient ranges from 0 to 1, where 0 represents perfect equality and 1 represents perfect inequality.
It is commonly used to measure income inequality in a population.
A Gini coefficient of 0.4 or higher is considered to be a high level of inequality.
Gini coefficient can be calculated using the Lorenz curve, which plots the cumulati...
A chair is a piece of furniture used for sitting, while a cart is a vehicle used for transporting goods.
A chair typically has a backrest and armrests, while a cart does not.
A chair is designed for one person to sit on, while a cart can carry multiple items or people.
A chair is usually stationary, while a cart is mobile and can be pushed or pulled.
A chair is commonly found in homes, offices, and public spaces, while a c...
Outliers can be detected using statistical methods like box plots, z-score, and IQR. Treatment can be removal or transformation.
Use box plots to visualize outliers
Calculate z-score and remove data points with z-score greater than 3
Calculate IQR and remove data points outside 1.5*IQR
Transform data using log or square root to reduce the impact of outliers
I applied via Company Website and was interviewed before Feb 2023. There was 1 interview round.
I applied via Company Website and was interviewed before Aug 2023. There were 2 interview rounds.
Bert and transformer are models used in natural language processing for tasks like text classification and language generation.
Bert (Bidirectional Encoder Representations from Transformers) is a transformer-based model developed by Google for NLP tasks.
Transformer is a deep learning model architecture that uses self-attention mechanisms to process sequential data like text.
Both Bert and transformer have been widely use...
NLP pre processing techniques involve cleaning and preparing text data for analysis.
Tokenization: breaking text into words or sentences
Stopword removal: removing common words that do not add meaning
Lemmatization: reducing words to their base form
Normalization: converting text to lowercase
Removing special characters and punctuation
I appeared for an interview before Apr 2023.
Softmax and sigmoid are both activation functions used in neural networks.
Softmax is used for multi-class classification problems, while sigmoid is used for binary classification problems.
Softmax outputs a probability distribution over the classes, while sigmoid outputs a probability for a single class.
Softmax ensures that the sum of the probabilities of all classes is 1, while sigmoid does not.
Softmax is more sensitiv...
I applied via Campus Placement
Developed machine learning models to predict customer churn and optimize marketing campaigns.
Built predictive models using Python and scikit-learn
Utilized SQL to extract and manipulate data for analysis
Collaborated with cross-functional teams to implement data-driven solutions
Python coding question and ML question
I applied via LinkedIn and was interviewed in Jul 2024. There were 3 interview rounds.
Assignment on credit risk
based on 1 interview
Interview experience
based on 1 review
Rating in categories
Senior Software Engineer
92
salaries
| ₹24.7 L/yr - ₹62 L/yr |
Software Engineer
50
salaries
| ₹15 L/yr - ₹42.4 L/yr |
Data Scientist
32
salaries
| ₹12 L/yr - ₹45 L/yr |
Product Engineer
24
salaries
| ₹18.6 L/yr - ₹65 L/yr |
Product Manager
24
salaries
| ₹27.9 L/yr - ₹64 L/yr |
Wells Fargo
JPMorgan Chase & Co.
Citicorp
Morningstar