Maximum Path Sum Between Two Leaves

You are given a non-empty binary tree where each node has a non-negative integer value. Return the maximum possible sum of path between any two leaves of the given tree.

The path is also inclusive of the leaf nodes and the maximum path sum may or may not go through the root of the given tree.

If there is only one leaf node in the tree, then return -1.

Input Format
The first line of input contains an integer 'T' representing the number of test cases. Then the test cases follow.

The only line of each test case contains elements in the level order form. The line consists of values of nodes separated by a single space. In case a node is null, we take -1 on its place.

For example, the input for the tree depicted in the below image would be :

Example Input

1
2 3
4 -1 5 6
-1 7 -1 -1 -1 -1
-1 -1

Explanation :

Level 1 :
The root node of the tree is 1

Level 2 :
Left child of 1 = 2
Right child of 1 = 3

Level 3 :
Left child of 2 = 4
Right child of 2 = null (-1)
Left child of 3 = 5
Right child of 3 = 6

Level 4 :
Left child of 4 = null (-1)
Right child of 4 = 7
Left child of 5 = null (-1)
Right child of 5 = null (-1)
Left child of 6 = null (-1)
Right child of 6 = null (-1)

Level 5 :
Left child of 7 = null (-1)
Right child of 7 = null (-1)

The first not-null node(of the previous level) is treated as the parent of the first two nodes of the current level. The second not-null node (of the previous level) is treated as the parent node for the next two nodes of the current level and so on.
The input ends when all nodes at the last level are null(-1).
Note :
The above format was just to provide clarity on how the input is formed for a given tree. 
The sequence will be put together in a single line separated by a single space. Hence, for the above-depicted tree, the input will be given as:

1 2 3 4 -1 5 6 -1 7 -1 -1 -1 -1 -1 -1
Output Format:
For each test case, print a single integer representing the maximum path sum between two leaf nodes of the given tree.
Note:
You do not need to print anything; it has already been taken care of. Just implement the given function.
Constraints:
1 <= T <= 100
1 <= N <= 5000
0 <= data <= 10^5

Where 'N' is the number of nodes in the tree.

Time limit: 1 sec
CodingNinjas
author
2y

traverse the tree and find maximum sum from leaf to root in left subtree, find maximum sum from leaf to root in right subtree of X, add the above two calculated values then return the maximum value

CodingNinjas
author
2y
Naive approach

The main idea behind this approach is to traverse all the nodes in the tree and calculate the maximum sum path between two leaves that passes through a particular node. Now, we have the ...read more

CodingNinjas
author
2y
Optimized Approach

In this approach, instead of calculating the maximum node-to-leaf path of left child and right child for every node in the tree, we calculate the maximum sum path between two leaves ...read more

Anonymous
1y

‘FIND_MAX_SUM_PATH()’ : In this function, we initialize the variable 'MAX_SUM_PATH' to -1. This variable will give us the final answer i.e. maximum sum of path between two leaves for the given tree. F...read more

Add answer anonymously...
Amazon Software Developer Interview Questions
Stay ahead in your career. Get AmbitionBox app
qr-code
Helping over 1 Crore job seekers every month in choosing their right fit company
65 L+

Reviews

4 L+

Interviews

4 Cr+

Salaries

1 Cr+

Users/Month

Contribute to help millions
Get AmbitionBox app

Made with ❤️ in India. Trademarks belong to their respective owners. All rights reserved © 2024 Info Edge (India) Ltd.

Follow us
  • Youtube
  • Instagram
  • LinkedIn
  • Facebook
  • Twitter