LRU Cache Implementation

Design and implement a data structure for Least Recently Used (LRU) cache to support the following operations:

1. get(key) - Return the value of the key if the key exists in the cache, otherwise return -1.

2. put(key, value), Insert the value in the cache if the key is not already present or update the value of the given key if the key is already present. When the cache reaches its capacity, it should invalidate the least recently used item before inserting the new item.
You will be given ‘Q’ queries. Each query will belong to one of these two types:
Type 0: for get(key) operation.
Type 1: for put(key, value) operation.
Note :
1. The cache is initialized with a capacity (the maximum number of unique keys it can hold at a time).

2. Access to an item or key is defined as a get or a put operation on the key. The least recently used key is the one with the oldest access time.
Input Format :
The first line of input contains two space-separated integers 'C' and 'Q', denoting the capacity of the cache and the number of operations to be performed respectively.

The next Q lines contain operations, one per line. Each operation starts with an integer which represents the type of operation. 

If it is 0, then it is of the first type and is followed by one integer key. 

If it is 1, it is of the second type and is followed by two space-separated integers key and value(in this order). 
Output Format :
For each operation of type 0, print an integer on a single line, denoting the value of the key if the key exists, otherwise -1.
Note :
You don't need to print anything, it has already been taken care of. Just implement the given function.
Constraints :
1 <= C <= 10^4
1 <= Q <= 10^5
1 <= key, value <= 10^9

Time Limit: 1 sec
Sample Input 1 :
3 11
1 1 1
1 2 2
1 3 3
1 4 5
0 3
0 1
0 4
1 2 3
0 1
0 3
0 2
Sample Output 1 :
3
-1
5
-1
3
3
Explanation to Sample Input 1 :

alt-text

Initializing a cache of capacity 3, LRUCache cache = new LRUCache(3);
Then each operation is performed as shown in the above figure.
cache.put(1,1)
cache.put(2,2)
cache.put(3,3)
cache.put(4,5)
cache.get(3)      // returns 3
cache.get(1)      // returns -1
cache.get(2)      // returns 2
cache.put(5,5)
cache.get(4)      // returns -1
cache.get(3)      // returns 3
Sample Input 2 :
2 6
1 1 1
1 2 2
0 2
1 3 3
0 3
0 1
Sample Output 2 :
2
3
-1
CodingNinjas
author
2y
Array Approach

We will use an array of type Pair<key, value> to implement our LRU Cache where the larger the index is, the more recently the key is used. Means, the 0th index denotes the least recentl...read more

CodingNinjas
author
2y
Using HahMap with Queue

We will use two data structures to implement our LRU Cache.

  1. Queue<Node>: To store the nodes into cache where the least recently used key will be the head node and the most rece...read more
Help your peers!
Add answer anonymously...
Amazon Software Developer Intern Interview Questions
Stay ahead in your career. Get AmbitionBox app
qr-code
Helping over 1 Crore job seekers every month in choosing their right fit company
65 L+

Reviews

4 L+

Interviews

4 Cr+

Salaries

1 Cr+

Users/Month

Contribute to help millions
Get AmbitionBox app

Made with ❤️ in India. Trademarks belong to their respective owners. All rights reserved © 2024 Info Edge (India) Ltd.

Follow us
  • Youtube
  • Instagram
  • LinkedIn
  • Facebook
  • Twitter